[Progress in the effect of microRNA carried by extracellular vesicles in follicular fluid on follicular atresia].

Sheng Wu Gong Cheng Xue Bao

Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.

Published: August 2022

Extracellular vesicles (EVs) are membrane-bound particles actively released by cells. In prokaryotes and eukaryotes, EVs are effective bridges for communication between cells. EVs carry biological macromolecules, including proteins, lipids and nucleic acid, which affects different physiological functions of parent cells and recipient cells. Among them, the microRNA carried by EVs is the most reported and plays an important role in physiological function of organisms. During the development of follicles, only a few follicles can fully develop and ovulate, whereas most of them undergo atresia at different stages of development. In the whole process of follicular development, the changes at each stage and the regulation mechanism of follicular atresia are not completely understood. In this paper, we introduced the types, characteristics, isolation methods and uses of EVs, and emphasized how microRNA carried by EVs in follicular fluid regulated follicular atresia from the aspects of different cytokines and hormones. Additionally, the application prospect of microRNA carried by EVs in follicular fluid in reproductive regulation and reproductive disease diagnosis was discussed. This paper is significant for studying the regulation of follicular development and the effective utilization of oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.210901DOI Listing

Publication Analysis

Top Keywords

microrna carried
16
follicular fluid
12
carried evs
12
extracellular vesicles
8
follicular
8
follicular development
8
follicular atresia
8
evs follicular
8
evs
7
[progress microrna
4

Similar Publications

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells.

World J Gastroenterol

January 2025

Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.

Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.

View Article and Find Full Text PDF

Mesenchymal Stem Cell-Sourced Exosomes as Potentially Novel Remedies for Severe Dry Eye Disease.

J Ophthalmol

January 2025

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia.

Severe dry eye disease (DED) is an inflammatory condition characterized by a lack of sufficient moisture or lubrication on the surface of the eye, significantly impacting the quality of life and visual function. Since detrimental immune response is crucially responsible for the development and aggravation of DED, therapeutic agents which modulate phenotype and function of eye-infiltrated inflammatory immune cells could be used for the treatment of severe DED. Due to their potent immunomodulatory properties, mesenchymal stem cells (MSCs) represent potentially new remedies for the treatment of inflammatory eye diseases.

View Article and Find Full Text PDF

BRAF regulates circPSD3/miR-526b/RAP2A axis to hinder papillary thyroid carcinoma progression.

BMC Mol Cell Biol

January 2025

Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China.

Background: Papillary thyroid carcinoma (PTC) is a common malignant tumor. BRAF mutation has become a common molecular event in PTC pathogenesis. Circular RNA PSD3 (circPSD3) is known to be highly expressed in PTC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!