Animal Care in Radiation Medical Countermeasures Studies.

Radiat Res

Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland.

Published: November 2022

Animal models are necessary to demonstrate the efficacy of medical countermeasures (MCM) to mitigate/treat acute radiation syndrome and the delayed effects of acute radiation exposure and develop biodosimetry signatures for use in triage and to guide medical management. The use of animal models in radiation research allows for the simulation of the biological effects of exposure in humans. Robust and well-controlled animal studies provide a platform to address basic mechanistic and safety questions that cannot be conducted in humans. The U.S. Department of Health and Human Services has tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- through advanced-stage MCM development for radiation-induced injuries; and advancement of biodosimetry platforms and exploration of biomarkers for triage, definitive dose, and predictive purposes. Some of these NIAID-funded projects may transition to the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services, which is tasked with the advanced development of MCMs to include pharmacokinetic, exposure, and safety assessments in humans. Guided by the U.S. Food and Drug Administration's (FDA) Animal Rule, both NIAID and BARDA work closely with researchers to advance product and device development, setting them on a course for eventual licensure/approval/clearance of their approaches by the FDA. In August 2020, NIAID partnered with BARDA to conduct a workshop to discuss currently accepted animal care protocols and examine aspects of animal models that can influence outcomes of studies to explore MCM efficacy for potential harmonization. This report provides an overview of the two-day workshop, which includes a series of special topic presentations followed by panel discussions with subject-matter experts from academia, industry partners, and select governmental agencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743977PMC
http://dx.doi.org/10.1667/RADE-21-00211.1DOI Listing

Publication Analysis

Top Keywords

animal models
12
animal care
8
medical countermeasures
8
acute radiation
8
department health
8
health human
8
human services
8
services tasked
8
advanced development
8
animal
7

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Background: Brucellosis is a zoonotic disease caused by Brucella spp., affecting various animals and humans, leading to significant economic and public health impacts. Traditional diagnostic methods, mainly serological, often fail to detect seronegative carriers, which continue to spread the infection.

View Article and Find Full Text PDF

Objectives: Our aim was to evaluate the comparative effects of sertraline and vortioxetine against stress-induced brain injury in rats.

Methods: The rats were assigned to a nonstress group (NSG), stress-treated control (StC), sertraline + stress (SSt), and vortioxetine + stress (VSt) groups. Sertraline and vortioxetine (10 mg/kg) were given orally by gavage to the SSt and VSt groups.

View Article and Find Full Text PDF

Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model.

J Cancer Res Ther

December 2024

Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.

Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.

Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!