Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic--glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401619 | PMC |
http://dx.doi.org/10.1126/sciadv.abn8614 | DOI Listing |
Adv Sci (Weinh)
December 2024
Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
Human induced pluripotent stem cell derived hepatocytes (hiPSC-heps) hold promising value for acute liver failure (ALF) treatment, while their therapeutic efficacy is usually limited by low cell bioactivity and untargeted in vivo accumulation. Here, inspired by vascularity supporting cellular architectures in the tissues and organs, a novel vascularized hiPSC-heps spheroid based on microfluidic microcapsules is presented for liver repair via orthotopic transplantation. The microcapsules are comprised of aqueous cores that facilitate hiPSC-hep aggregating into spheroids, and hybrid hydrogel shells of sodium alginate and hyaluronic acid methacryloyl (HAMA).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").
View Article and Find Full Text PDFHum Reprod Update
December 2024
C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA.
Background: Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited.
View Article and Find Full Text PDFMicrosc Microanal
November 2024
Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur 416 004, Maharashtra, India.
Barleria is a palaeotropical genus of herbs, shrubs, and rarely climbers or trees. We investigated the karyotypes and male meiosis of 12 and 13 species, respectively, for the first time. Mitotic metaphases revealed two chromosome counts, 2n = 40 and 2n = 44.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 100050, China.
Maximizing drug cargo carrying capacity in blood circulation, controlling the fate of nanoparticles, and precisely drug release to tumor targets are the main aims of multifunctional nanomedicine-based antitumor therapy. Here we combined macrocyclic polyamine di(triazole-[12]aneN) () and chemical drug camptothecin (CPT, ) through photosensitizer 1,1-dicyano-2-phenyl-2-(4-diphenylamino) phenyl-ethylene () containing the cleavable disulfide () linkage as an all-in-one theranostic nanoprodrug, . The corresponding compound with carbon chain () linkage, , was also prepared for a comparison study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!