Peripheral artery disease (PAD) is a systemic vascular disease of the legs that results in a blockage of blood flow from the heart to the lower extremities. Now one of the most common causes of mortality in the U.S., the first line of therapy for PAD is to mechanically open the blockages using balloon angioplasty. Coating the balloons with antiproliferative agents can potentially reduce vessel re-narrowing, or restenosis after surgical intervention, but current drug-coated balloons releasing chemotherapy agents like paclitaxel have in some cases shown increased mortality long-term. Our aim was to design a novel drug-coated balloon using a polymeric nanodelivery system for a sustained release of polyphenols that reduce restenosis but with reduced toxicity compared to chemotherapy agents. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles with entrapped quercetin, a dimethoxy quercetin (rhamnazin), as well as quercetin covalently attached to PLGA, were developed. Balloon catheters were coated with polymeric nanoparticles using an ultrasonic method, and nanoparticle characteristics, drug loading, coating uniformity and drug release were determined. The adhesion of nanoparticles to vascular smooth muscle cells and the antiproliferative effect of nano-delivered polyphenols were also assessed. Of the nanoparticle systems tested, those with covalently attached quercetin provided the most sustained release over a 6-day period. Although these particles adhered to cells to a smaller extent compared to other nanoparticle formulations, their attachment was resistant to washing. These particles also exhibited the greatest anti-proliferative effect. In addition, their attachment was not altered when the cells were grown in calcifying conditions, and in PAD tissue calcification is typically a condition that impedes drug delivery. Moreover, the ultrasonic coating method generated a uniform balloon coating. The polymeric nanoparticle system with covalently attached quercetin developed herein is thus proposed as a promising platform to reduce restenosis post-angioplasty.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401142 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268307 | PLOS |
Int J Biol Sci
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China.
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism.
View Article and Find Full Text PDFmLife
December 2024
State Key Laboratory of Mycology, Institute of Microbiology Chinese Academy of Sciences Beijing China.
Glycosylphosphatidylinositol (GPI) anchoring is one of the conserved posttranslational modifications in eukaryotes that attach proteins to the plasma membrane. In fungi, in addition to plasma membrane GPI-anchored proteins (GPI-APs), some GPI-APs are specifically released from the cell membrane, secreted into the cell wall, and covalently linked to cell wall glucans as GPI-anchored cell wall proteins (GPI-CWPs). However, it remains unclear how fungal cells specifically release GPI-CWPs from their membranes.
View Article and Find Full Text PDFJ Mol Model
December 2024
Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
Context: Hydrogen storage in porous nanostructured compounds have recently attracted a lot of attention due to the fact that the underlying adsorption mechanism and thermodynamics provide suitable platform for room temperature adsorption and desorption of H molecules. This work reports the findings of a study on the reversible hydrogen storage capacities of Sc and Y decorated C fullerene, conducted using dispersion-corrected density functional theory (DFT) calculation. The transition metal (TM) atoms, such as Sc and Y, are identified to attach to the C-C bridge position of the C fullerene through non-covalent closed-shell interactions.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
DNA repair is a most important cellular process that helps maintain the integrity of the genome and is currently considered by researchers as one of the factors determining the maximum lifespan. The central regulator of the DNA repair process is the enzyme poly(ADP-ribose)polymerase 1 (PARP1). PARP1 catalyzes the synthesis of poly(ADP-ribose) polymer (PAR) upon DNA damage using nicotinamide adenine dinucleotide (NAD+) as a substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!