Introduction: Few treatments have demonstrated mortality benefits among hospitalized hypoxic COVID-19 patients. We evaluated the use of hyperbaric oxygen (HBO2) therapy as a therapeutic intervention among hospitalized patients with a high oxygen requirement prior to vaccine approval.

Methods: We extracted data on patients with COVID-19 hypoxia who required oxygen supplementation ranging from a 6L nasal cannula up to a high-flow nasal cannula at 100% FiO2 at 60L/minute with a 100% non-rebreather mask at 15 L/minute and were eligible for off-label HBO2 therapy from October 2020 to February 2021. We followed the Monitored Emergency use of Unregistered and Investigational Interventions or (MEURI) in conjunction with the consistent re-evaluation of the protocol using the Plan-Do-Study-Act (PDSA) tool [1]. We compared patient characteristics and used Fisher's exact test and a survival analysis to assess the primary endpoint of inpatient death.

Results: HBO2 therapy was offered to 36 patients, of which 24 received treatment and 12 did not receive treatment. Patients who did not receive treatment were significantly older (p ≺ 0.01) and had worse baseline hypoxia (p = 0.06). Three of the 24 (13%) patients who received treatment died compared to six of 12 (50%) patients who did not receive treatment (RR ratio: 0.25, p = 0.04, 95% CI: 0.08 to 0.83). In the survival analysis, there was a statistically significant reduction in inpatient mortality in the treatment group (HR: 0.19, p = 0.02, 95% CI: 0.05-0.74). However, after adjusting for age and baseline hypoxia, there was no difference in inpatient mortality (hazard ratio: 0.48, p = 0.42, 95% CI: 0.08-2.86).

Conclusion: The survival benefit of HBO2 therapy observed in our unadjusted analysis suggests that there may be therapeutic benefits of HBO2 in treating COVID-19 hypoxia as an adjunct to standard care.

Download full-text PDF

Source
http://dx.doi.org/10.22462/05.06.2022.3DOI Listing

Publication Analysis

Top Keywords

hbo2 therapy
16
receive treatment
12
hyperbaric oxygen
8
patients
8
covid-19 patients
8
prior vaccine
8
covid-19 hypoxia
8
nasal cannula
8
survival analysis
8
patients received
8

Similar Publications

Background: Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. With the continuous development of neuromodulation technology, Repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as a potential non-invasive treatment for ADHD. However, there is a lack of research on the mechanism of rTMS for ADHD.

View Article and Find Full Text PDF

The acute effects of whole-body vibration exercise on cortical activation in young adults: An fNIRS study.

Behav Brain Res

December 2024

Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands. Electronic address:

Background: Whole-body vibration (WBV) training has emerged as an alternative exercise modality for individuals unable to participate in regular physical activity. While previous studies demonstrated positive effects of WBV on physical outcomes, its impact on cognition remains relatively unexplored, despite studies suggesting cognitive benefits. This study aims to investigate the cortical activation patterns in the primary somatosensory cortex (S1) and dorsolateral prefrontal cortex (DLPFC) during WBV and a subsequent cognitive task.

View Article and Find Full Text PDF

Significance: Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. These areas can be assessed by monitoring cerebral hemodynamics and metabolism. Robust quantification of these biomarkers is complicated to perform during neurosurgery due to the critical context of the operating room.

View Article and Find Full Text PDF

Anemia in patients with sickle cell disease (SCD) increases 2,3-diphosphoglycerate (2,3-DPG), decreasing hemoglobin-oxygen (HbO) affinity to improve oxygen offloading and promote hemoglobin polymerization (sickling) of red blood cells (RBCs). We report the discovery of FT-4202, an investigational, selective pyruvate kinase type-R (PKR) activator with a multimodal mechanism of action and potential to increase ATP and decrease 2,3-DPG, resulting in increased HbO affinity, decreased Hb polymerization, and improved RBC health. FT-4202 was identified via structure-enabled lead optimization medicinal chemistry using X-ray crystallography, molecular modeling, and thermal shift assays.

View Article and Find Full Text PDF

Research has not demonstrated whether multiple cups of negative pressure cupping therapy would induce interactions of hemodynamic responses between different areas. A multichannel near-infrared spectroscopy (NIRS) was used to assess oxyhemoglobin and deoxyhemoglobin oscillations in response to cupping therapy. Wavelet transform and wavelet phase (WPC) coherence were used to quantify NIRS signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!