Influenza viruses bind to their target through a multivalent interaction of their hemagglutinins (HAs) with sialosides at the host cell surface. To fight the virus, one therapeutic approach consists in developing sialylated multivalent structures that can saturate the virus HAs and prevent the binding to host cells. We describe herein the biotechnological production of sialylated solid lipid microparticles (SSLMs) in 3 steps: (i) a microbiological step leading to the large-scale production of sialylated maltodextrins by metabolic engineering of an Escherichia coli strain, (ii) a new in vitro glycosylation process using the amylomaltase MalQ, based on the transglycosylation of the terminal sialoside ligand of the sialylated maltodextrin onto a long-chain alkyl glucoside, and (iii) the formulation of the final SSLMs presenting a multivalent sialic acid. We also describe the morphology and structure of the SSLMs and demonstrate their very promising properties as influenza virus inhibitors using hemagglutination inhibition and microneutralization assays on the human A/H1N1 pdm09 virus.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwac054DOI Listing

Publication Analysis

Top Keywords

production sialylated
12
biotechnological production
8
sialylated solid
8
solid lipid
8
lipid microparticles
8
influenza virus
8
sialylated
5
virus
5
microparticles inhibitors
4
inhibitors influenza
4

Similar Publications

Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs).

View Article and Find Full Text PDF

Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology.

Front Immunol

January 2025

Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.

Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research.

View Article and Find Full Text PDF

LC-MS/MS analysis of surface and lysate N-glycans of CHO-K1 cells: Structure, relative quantity, and absolute quantity.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Chinese hamster ovary (CHO)-K1 cells are widely used in biomedical research relevant to cancer, toxicity screening, and viruses, as well as in the production of recombinant proteins for biopharmaceuticals. In this study, liquid chromatography (LC)-electrospray ionization (ESI)-higher energy collisional dissociation (HCD)-tandem mass spectrometry (MS/MS) was used to characterize the surface and lysate N-glycans of CHO-K1 cells and analyze their structures. The relative quantity (%) of each N-glycan and absolute quantity (pmol) of total N-glycans were also obtained.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) present a promising modality for numerous biological and medical applications, including therapeutics. Developing facile methods to engineer EVs is essential to meeting the rapidly expanding demand for various functionalized EVs in these applications. Herein, we developed a technology that integrates enzymatic glycoengineering and microfluidics for effective EV functionalization.

View Article and Find Full Text PDF

In-depth characterization of -glycosylation and sialic acid content in fetal and adult fibrinogen.

Res Pract Thromb Haemost

November 2024

Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.

Background: Fetal fibrinogen is a variant present in neonates. Blood products used in neonates are tailored for adults and do not seamlessly integrate into neonatal clots. Increased sialic acid content has been found in fetal fibrinogen compared with adult fibrinogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!