We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, -motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.2c04304 | DOI Listing |
Food Chem
January 2025
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China. Electronic address:
This study explored the role of fibrinogen hydrolyzed peptides in enhancing myosin thermal gelation properties. We investigated the impact of disrupted hydrophobic interactions and disulfide bonds on the characteristics of myosin-fibrinogen peptide composite gels using sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). Disrupted hydrophobic interactions led to decreased gel texture, water-holding capacity, rheological properties and irregular pore distribution, emphasizing their critical role in gel integrity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022 China. Electronic address:
HBT-DPI was a single-molecule multi-conformational fluorescent material and had unique applications for hydrophobic/hydrophilic mapping on large-scale heterogeneous surfaces. In this paper, the different proton transfer processes and luminescence mechanisms of HBT-DPI in Dichloromethane (DCM, no hydrogen bond (HB) receptor) and N, N-Dimethylformamide (DMF, HB receptor) solvents were systematically studied. Using the quantum chemistry method, the stable structures of HBT-DPI in two solvents were determined based on the Boltzmann distribution.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
We present an implementation of the quantum mechanics/molecular mechanics (QM/MM) method for periodic systems using GPU accelerated QM methods, a distributed multipole formulation of the electrostatics, and a pseudobond treatment of the QM/MM boundary. We demonstrate that our method has well-controlled errors, stable self-consistent QM convergence, and energy-conserving dynamics. We further describe an application to the catalytic kinetics of chorismate mutase.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!