Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present an implementation of DIANA, a computational model of spoken word recognition, to model responses collected in the Massive Auditory Lexical Decision (MALD) project. DIANA is an end-to-end model, including an activation and decision component that takes the acoustic signal as input, activates internal word representations, and outputs lexicality judgments and estimated response latencies. Simulation 1 presents the process of creating acoustic models required by DIANA to analyze novel speech input. Simulation 2 investigates DIANA's performance in determining whether the input signal is a word present in the lexicon or a pseudoword. In Simulation 3, we generate estimates of response latency and correlate them with general tendencies in participant responses in MALD data. We find that DIANA performs fairly well in free word recognition and lexical decision. However, the current approach for estimating response latency provides estimates opposite to those found in behavioral data. We discuss these findings and offer suggestions as to what a contemporary model of spoken word recognition should be able to do.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394956 | PMC |
http://dx.doi.org/10.1177/00238309221111752 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!