The current COVID-19 pandemic situation and the associated restrictions have increased the amount of generated waste. It results from the necessity to wear personal protective equipment. Thus, the disposal of masks and gloves is a topical issue and requires immediate investigation. The main aims of this work are management and environmental studies of municipal solid wastes (MSW), which have been generated during the COVID-19 pandemic time. Effective waste management in relation to a circular economy is presented. A sample of refuse derived fuel (RDF) with a high content of plastics was used for the experimental and calculation studies. Pyrolysis was selected as the best thermal decomposition process for this kind of wastes. Proximate and ultimate analyses were performed for RDF and its products. Pyrolysis was carried out using a pilot-scale reactor with a continuous flow of 250 kg/h at 900 °C. Thermogravimetric analysis was applied during the pyrolysis investigation and showed that the main decomposition of RDF took place in the temperature range of 250-500 °C. The pyrolysis gas contained combustible compounds like CO (19.8%), H (13.2%), CH (18.9%) and CH (7.1%), giving a high calorific value - 24.4 MJ/m. The experimental results were implemented for numerical calculations. Chemkin-Pro software was applied to predict the chemical composition of the pyrolysis gas. The performed computer simulations demonstrated very good agreement with the results obtained during the experiments. They also indicated that there is a strong relationship between the chemical composition of the pyrolysis gas, the process temperature and residence time in the reactor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388221 | PMC |
http://dx.doi.org/10.1016/j.fuel.2022.123981 | DOI Listing |
Sci Total Environ
January 2025
Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand.
This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China. Electronic address:
The continuously growing of municipal solid waste (MSW) has posed a threat to human-being. Pyrolysis is a promising technique for MSW disposal, as it can reduce its volume and produce valuable products as well. This study evaluated the potential of carbon residue (CR) derived from waste carton as soil amendment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Energy Systems Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!