The ongoing COVID-19 pandemic has created an unprecedented predicament for global supply chains (SCs). Shipments of essential and life-saving products, ranging from pharmaceuticals, agriculture, and healthcare, to manufacturing, have been significantly impacted or delayed, making the global SCs vulnerable. A better understanding of the shipment risks can substantially reduce that nervousness. Thenceforth, this paper proposes a few Deep Learning (DL) approaches to mitigate shipment risks by predicting "if a shipment can be exported from one source to another", despite the restrictions imposed by the COVID-19 pandemic. The proposed DL methodologies have four main stages: data capturing, de-noising or pre-processing, feature extraction, and classification. The feature extraction stage depends on two main variants of DL models. The first variant involves three recurrent neural networks (RNN) structures (i.e., long short-term memory (LSTM), Bidirectional long short-term memory (BiLSTM), and gated recurrent unit (GRU)), and the second variant is the temporal convolutional network (TCN). In terms of the classification stage, six different classifiers are applied to test the entire methodology. These classifiers are SoftMax, random trees (RT), random forest (RF), k-nearest neighbor (KNN), artificial neural network (ANN), and support vector machine (SVM). The performance of the proposed DL models is evaluated based on an online dataset (taken as a case study). The numerical results show that one of the proposed models (i.e., TCN) is about 100% accurate in predicting the risk of shipment to a particular destination under COVID-19 restrictions. Unarguably, the aftermath of this work will help the decision-makers to predict supply chain risks proactively to increase the resiliency of the SCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389854 | PMC |
http://dx.doi.org/10.1016/j.eswa.2022.118604 | DOI Listing |
Biomed Phys Eng Express
January 2025
Chiba University Center for Frontier Medical Engineering, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, JAPAN.
Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
In human activity-recognition scenarios, including head and entire body pose and orientations, recognizing the pose and direction of a pedestrian is considered a complex problem. A person may be traveling in one sideway while focusing his attention on another side. It is occasionally desirable to analyze such orientation estimates using computer-vision tools for automated analysis of pedestrian behavior and intention.
View Article and Find Full Text PDFHypertension is a critical risk factor and cause of mortality in cardiovascular diseases, and it remains a global public health issue. Therefore, understanding its mechanisms is essential for treating and preventing hypertension. Gene expression data is an important source for obtaining hypertension biomarkers.
View Article and Find Full Text PDFPLoS One
January 2025
Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.
The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Biology, Emory University, Atlanta, GA 30322, United States.
Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!