Although photodynamic therapy (PDT) is a promising antitumor strategy for tumor treatment, the short half-life and the limited diffusion distance of reactive oxygen species (ROS) greatly hamper its antitumor efficacy. Moreover, tumor cells develop antioxidative microenvironments to weaken the oxidative damage caused by PDT. Herein, a plasma membrane-targeted photooxidant (designated as SCPP) is prepared by the self-assembly of a chimeric peptide (Pal-K(PpIX)-R) and sorafenib. Plasma membrane-targeted SCPP could enhance lipid peroxidation (LPO) through in situ PDT upon light irradiation. Moreover, sorafenib-mediated chemotherapy could block cystine/glutamate antiporter xCT (SLC7A11) to inhibit the syntheses of intracellular GSH and glutathione peroxidase 4 (GPX4), which would destroy the antioxidant defense system of tumors. As a consequence, SCPP achieves a highly efficient tumor inhibition through enhanced PDT and ferroptosis therapy. This study might provide guidance for multisynergistic tumor therapy with a sophisticated mechanism under unfavorable conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00597 | DOI Listing |
Biophys J
December 2024
Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA,; Department of Nutrition, Texas A&M University, College Station, TX 77843, USA,; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX 77843, USA,. Electronic address:
Cholesterol-enriched plasma membrane domains are known to serve as signaling platforms in a diverse array of cellular processes. However, the link between cholesterol homeostasis and mutant APC-KRas-associated colorectal tumorigenesis remains to be established. Thus, we investigated the impact of Apc-Kras on (i) colonocyte plasma membrane cholesterol homeostasis, order, and receptor nanoclustering, (ii) colonocyte cell proliferation, and (iii) whether these effects are modulated by select membrane active dietaries (MADs).
View Article and Find Full Text PDFJ Cell Sci
December 2024
Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular functions in response to changes in energy availability. However, whether AMPK activity is spatially regulated, and the implications for cell function, have been unclear. We now report that AMPK associates with the Golgi, and that its activation by two specific pharmacological activators leads to Golgi fragmentation similar to that caused by the antibiotic Golgicide A, an inhibitor of Golgi-specific Brefeldin A resistance factor-1 (GBF1), a guanine nucleotide exchange factor that targets ADP-ribosylation factor 1 (ARF1).
View Article and Find Full Text PDFRSC Adv
October 2024
Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
Long-term labeling of the plasma membrane is crucial for visualizing membrane protein expression and morphological changes but is challenging due to the high fluidity of the plasma membrane, which can lead to probe diffusion or internalization of cells. Here, we precisely control the localization of carbon dots (M-CDs) on the plasma membrane without internalization after long-term observation under fluorescence microscopy. Adjusting the molar ratio of folic acid to -phenylenediamine allowed fine-tuning of the water solubility and fluorescence emission of the carbon dots.
View Article and Find Full Text PDFJ Bone Miner Res
October 2024
Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
Extracellular vesicles (EVs) are key mediators of cell-cell communication and are involved in transferring specific biomolecular cargo to recipient cells to regulate their physiological functions. A major challenge in the understanding of EV function in vivo is the difficulty ascertaining the origin of the EV particles. The recent development of the "Snorkel-tag," which includes EV-membrane-targeted CD81 fused to a series of extra-vesicular protein tags, can be used to mark EVs originating from a specific source for subsequent isolation and characterization.
View Article and Find Full Text PDFInorg Chem
June 2024
College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian 116600, China.
Long-term in situ plasma membrane-targeted imaging is highly significant for investigating specific biological processes and functions, especially for the imaging and tracking of apoptosis processes of cells. However, currently developed membrane probes are rarely utilized to monitor the in situ damage of the plasma membrane. Herein, a transition-metal complex phosphorescent indicator, , effectively paired with cholesterol, exhibits excellent properties on staining the plasma membrane, with excellent antipermeability, good photostability, large Stokes shift, and long luminescence lifetime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!