Bacterial contaminated water causes potential health issues. Conventional chlorine treatment has shortcomings of environmental hazards and chlorine adoptability by the bacterial cells. Ultrafiltration membrane can intercept bacterial species from feed water. Membrane having anti-biofouling/antifouling properties is needed for the removal of bacteria from feed water. Herein, interpolymer membranes with inherent antimicrobial activity and fouling release property have been prepared by the blend of poly(vinylidene fluoride) (PVDF), poly(vinyl pyrrolidone) and partially long chain alkylated (C12 chain) poly(vinyl imidazole) copolymer (PVIm-co-PVIm-C12) followed by cross-linking of the remaining VIm groups with an activated di-halide compound. The membranes obtain with copolymers of degree of alkyl substitution (DS) in the range of 0.75-0.85 and amount in the range of 0.9-3.5% w/w in the casting solutions exhibit good antimicrobial activity (>99 % of inhibition) and dynamic anti-biofouling property. The membrane prepared with 0.9% w/w of the copolymer (DS=0.85) shows higher flux recovery ratio (91 % for bacterial filtration and 88 % for protein filtration) compare to a pristine membrane (57 % for bacterial filtration and 58 % for protein filtration). The membrane is able to reject the bacteria completely. Use of small amount of copolymer and facile fabrication of stable anti-biofouling/antifouling membranes show potential for the purification of bacterial contaminated water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129538 | DOI Listing |
Carbohydr Polym
February 2025
Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:
Hierarchical porous composite microgels (SPZ microgels) were synthesized using microfluidic technology, composed of sodium alginate (SA), polyvinyl alcohol (PVA), and zeolitic imidazolate framework-8 (ZIF-8). The incorporation of ZIF-8 nanoparticles led to the formation of significant porous structures within the microgels, greatly enhancing their dye adsorption performance. Additionally, the diffusion of acetone during the crosslinking reaction resulted in sodium chloride crystal formation, creating a hierarchical porous structure with larger internal porous channels and smaller external channels.
View Article and Find Full Text PDFChemosphere
November 2024
Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India. Electronic address:
Industrial wastewater, despite undergoing primary and secondary treatments with conventional methods, continues to pose challenges due to the presence of multiple contaminants. Membrane separation has emerged as an effective solution to streamline the treatment process, yet it often results in surface fouling. This study introduces a single platform designed for simultaneous removal of dyes, oils, and proteins during the tertiary treatment stage, thereby eliminating the need for multiple separation steps.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States. Electronic address:
The mechanisms of drug release from amorphous solid dispersions (ASDs) are complex and not fully explored, making it difficult to optimize for in vivo performance. A recurring behavior has been the limit of congruency (LoC), a drug loading above which the ASD surface forms an amorphous drug-rich barrier in the presence of water, which hinders release, especially in non-sink conditions. Drug-polymer interactions and drug glass transition temperature were reported to affect the LoC.
View Article and Find Full Text PDFTalanta
February 2025
Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China. Electronic address:
RSC Adv
October 2024
Department of Applied Chemistry, Faculty of Science, Islamic Azad University South Tehran Branch Tehran Iran + 98 21 33722831.
A four-part and sustainable nanocomposite composed of carbon quantum dots modified with zeolite imidazolate framework-90, polyvinyl pyrrolidone and magnetite (CQDs/ZIF-90/PVP/FeO) was fabricated and applied in ultrasound-assisted magnetic dispersive micro-solid-phase extraction (US-A-MDMSPE). US-A-MDMSPE was followed by high-performance liquid chromatography with ultraviolet detection (HPLC-UV) for extraction, enrichment and simultaneous low-level monitoring of paracetamol (PCM) and etodolac (EDL) in human plasma. To increase the extraction yield and improve the sensitivity, nanohybrid arrays of metal-organic frameworks and conductive polymers were immobilized on the surface of CQDs followed by magnetization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!