Background: Altered lipid profiles are frequently present in cancer, and it is necessary to elucidate the role of changed lipid profiles in hepatocellular carcinoma (HCC). We conducted this study to investigate the changed lipid profile in HCC tissues and discover some remarkably changed lipid components, and to explore the function of changed lipid components in HCC development.

Methods: Gas chromatography/mass spectrometer (GC/MS analysis) was employed to measure the abundance of fatty acids between HCC tissues and adjacent noncancerous tissues. The proliferative ability of HCC cells was determined by Cell Counting Kit-8 and EdU assays. Transwell and wound healing assays were employed to determine the migratory ability of HCC cells. Protein expression was assessed by western blot assay.

Results: GC/MS analysis revealed that alpha-linolenic acid was present at lower levels in HCC tissues than that in the adjacent noncancerous tissues. Alpha-linolenic acid inhibited the proliferation, migration and invasion of HCC cells in vitro. Western blotting showed that alpha-linolenic acid treatment increased Farnesoid X receptor expression and decreased β-catenin and cyclinD1 expression.

Conclusions: Alpha-linolenic acid suppresses HCC progression through the FXR/Wnt/β-catenin signaling pathway. Rational use of alpha-linolenic acid may prevent the occurrence of liver cancer in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396762PMC
http://dx.doi.org/10.1186/s12986-022-00693-1DOI Listing

Publication Analysis

Top Keywords

alpha-linolenic acid
24
changed lipid
16
hcc tissues
12
hcc cells
12
hcc
9
hepatocellular carcinoma
8
signaling pathway
8
lipid profiles
8
lipid components
8
gc/ms analysis
8

Similar Publications

Vitiligo is a common chronic skin depigmentation disorder that seriously decreases the patients' overall quality of life. Human blood metabolites could contribute to unraveling the underlying biological mechanisms of vitiligo. We used GWAS summary statistics to assess the causal association between genetically predicted 1,400 serum metabolites and vitiligo risk by Mendelian randomization (MR).

View Article and Find Full Text PDF

Egg yolk phospholipids are commercially valuable products that are beneficial to human health. Previous research on phospholipids in egg yolk mainly focuses on phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), and fatty acid compositions, and neglects the esterification position and other bioactive phospholipids. This study found a total of 19 classes of phospholipids and 275 subclasses using lipidomics.

View Article and Find Full Text PDF

Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood.

View Article and Find Full Text PDF

Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.

View Article and Find Full Text PDF

Flaxseed and olive oil effectively treat numerous diseases and health conditions, particularly metabolic disorders. Traditional medicine has used both oils for managing cardiovascular disease, diabetes, gastrointestinal dysfunctions, metabolic-dysfunction-associated fatty liver disease (MAFLD), obesity, and more. This review explores the bioactive and polyphenolic compounds in flaxseed and olive oils that provide anti-inflammatory, antioxidant, anti-microbial, hepatoprotective, cardioprotective, antidiabetic, and gastroprotective benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!