Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review.

World J Microbiol Biotechnol

Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India.

Published: August 2022

With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-022-03396-0DOI Listing

Publication Analysis

Top Keywords

protein engineering
8
molecular methods
8
methods ameliorate
8
hunt α-amylase
4
α-amylase metagenome
4
metagenome strategies
4
strategies improve
4
improve thermostability
4
thermostability systematic
4
systematic review
4

Similar Publications

Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.

View Article and Find Full Text PDF

Globin X is a newly discovered member of the globin family, while its structure and function are not fully understood. In this study, we performed protein modelling studies using Alphafold3 and molecular dynamics simulations, which suggested that the protein adopts a typical globin fold, with the formation of a potential disulfide bond of Cys65 and Cys141. To elucidate the role of this unique disulfide in protein structure and stability, we constructed a double mutant of C65S/C141S by mutating the two cysteine residues to serine.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!