Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As an emerging dietary essential fatty acid, pentadecanoic acid (C15:0) is expected to have bioactive metabolites with broad health benefits. Here, we evaluated pentadecanoylcarnitine, an endogenous C15:0 metabolite, for dose dependent cell-based activities, including measurement of its effects on 148 clinically relevant biomarkers across twelve primary human cell systems mimicking various disease states. Mechanisms of action for pentadecanoylcarnitine were also assessed across 78 cell-based target assays. Pentadecanoylcarnitine had dose-dependent anti-inflammatory activities, including lower IL-1α, ITAC, MCP-1, and IP-10, across five cell systems relevant to treating cardiovascular, immune, neoplastic, pulmonary, and skin diseases. Targeted assays showed pentadecanoylcarnitine as a full-acting cannabinoid 1 and 2 receptor agonist (EC50 3.7 and 3.2 µM, 111% and 106% maximum activity compared to the positive control, respectively). Pentadecanoylcarnitine also had 5-HT1A and 5-HT1B receptor agonist and histamine H1 and H2 receptor antagonist activities. In summary, pentadecanoylcarnitine, a second discovered full-acting endocannabinoid, had broad pleiotropic activities relevant to regulating inflammation, pain, mood, and sleep. This study's findings further the need to evaluate the potential health impacts of C15:0 nutritional deficiencies caused by population-wide avoidance of all dietary saturated fats, including C15:0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399118 | PMC |
http://dx.doi.org/10.1038/s41598-022-18266-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!