The human brain is a complex system that can be efficiently represented as a network of structural connectivity. Many imaging studies would benefit from such network information, which is not always available. In this work, we present a whole-brain multi-scale structural connectome atlas. This tool has been derived from a cohort of 66 healthy subjects imaged with optimal technology in the setting of the Human Connectome Project. From these data we created, using extensively validated diffusion-data processing, tractography and gray-matter parcellation tools, a multi-scale probabilistic atlas of the human connectome. In addition, we provide user-friendly and accessible code to match this atlas to individual brain imaging data to extract connection-specific quantitative information. This can be used to associate individual imaging findings, such as focal white-matter lesions or regional alterations, to specific connections and brain circuits. Accordingly, network-level consequences of regional changes can be analyzed even in absence of diffusion and tractography data. This method is expected to broaden the accessibility and lower the yield for connectome research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399115PMC
http://dx.doi.org/10.1038/s41597-022-01624-8DOI Listing

Publication Analysis

Top Keywords

human connectome
12
multi-scale probabilistic
8
probabilistic atlas
8
atlas human
8
connectome
5
atlas
4
human
4
connectome human
4
human brain
4
brain complex
4

Similar Publications

Objectives: Language is a critical aspect of human cognition and function, and its preservation is a priority for neurosurgical interventions in the left frontal operculum. However, identification of language areas can be inconsistent, even with electrical mapping. The use of multimodal structural and functional neuroimaging in conjunction with intraoperative neuromonitoring may augment cortical language area identification to guide the resection of left frontal opercular lesions.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.

View Article and Find Full Text PDF

The fine-grained functional organization of the human lateral prefrontal cortex (PFC) remains poorly understood. Previous fMRI studies delineated focal domain-general, or multiple-demand (MD), PFC areas that co-activate during diverse cognitively demanding tasks. While there is some evidence for category-selective (face and scene) patches, in human and non-human primate PFC, these have not been systematically assessed.

View Article and Find Full Text PDF

Autism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!