The apicoplast, a relict plastid found in most species of the phylum Apicomplexa, harbors the ferredoxin redox system which supplies electrons to enzymes of various metabolic pathways in this organelle. Recent reports in Toxoplasma gondii and Plasmodium falciparum have shown that the iron-sulfur cluster (FeS)-containing ferredoxin is essential in tachyzoite and blood-stage parasites, respectively. Here we review ferredoxin's crucial contribution to isoprenoid and lipoate biosynthesis as well as tRNA modification in the apicoplast, highlighting similarities and differences between the two species. We also discuss ferredoxin's potential role in the initial reductive steps required for FeS synthesis as well as recent evidence that offers an explanation for how NADPH required by the redox system might be generated in Plasmodium spp.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481715PMC
http://dx.doi.org/10.1016/j.pt.2022.08.002DOI Listing

Publication Analysis

Top Keywords

redox system
12
ferredoxin redox
8
system essential
4
essential electron
4
electron distributing
4
distributing hub
4
hub apicoplast
4
apicoplast apicomplexa
4
apicomplexa apicoplast
4
apicoplast relict
4

Similar Publications

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are essential molecules involved in intercellular communication, signal transduction, and metabolic processes. Abiotic stresses cause the accumulation of excess ROS in plant cells. The issue of regulating the antioxidant protection of plants using natural and synthetic compounds with antioxidant activity still remains one of the most important and relevant areas of fundamental and applied research.

View Article and Find Full Text PDF

Fertility disorders are a worldwide problem affecting 8-12% of the population, with the male factor substantially contributing to about 40-50% of all infertility cases. Mitochondria, crucial organelles for cellular viability, play a pivotal role in the processes of spermatogenesis and significantly affect sperm quality and their fertilizing ability. Mitochondrial oxidative phosphorylation (OXPHOS) dysfunction, reduced energy supply for sperm, reduced endogenous coenzyme Q (CoQ) levels, and oxidative stress are among the main factors that contribute to male infertility.

View Article and Find Full Text PDF

Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two species, oilseed rape (, ), and black mustard (, ).

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a common non-communicable chronic liver disease characterized by a spectrum of conditions ranging from steatosis and alcohol-associated steatohepatitis (AH) to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The pathogenesis of ALD involves a complex interplay of various molecular, biochemical, genetic, epigenetic, and environmental factors. While the mechanisms are well studied, therapeutic options remain limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!