Treatments targeting oncogenic fusion proteins are notable examples of successful drug development. Abnormal splicing of genes resulting in fusion proteins is a critical driver of various tumors, but the underlying mechanism remains poorly understood. Here, we show that SUMOylation of the fusion protein Synaptojanin 2 binding protein-Cytochrome-c oxidase 16 (SYNJ2BP-COX16) at K107 induces mitochondrial fission in breast cancer and that the K107 site regulates SYNJ2BP-COX16 mitochondrial subcellular localization. Compared with a non-SUMOylated K107R mutant, wild-type SYNJ2BP-COX16 contributed to breast cancer cell proliferation and metastasis in vivo and in vitro by increasing adenosine triphosphate (ATP) production and cytochrome-c oxidase (COX) activity. SUMOylated SYNJ2BP-COX16 recruits dynamin-related protein 1 (DRP1) to the mitochondria to promote ubiquitin-conjugating enzyme 9 (UBC9) binding to DRP1, enhance SUMOylation of DRP1 and phosphorylation of DRP1 at S616, and then induce mitochondrial fission. Moreover, Mdivi-1, an inhibitor of DRP1 phosphorylation, decreased the localization of DRP1 in mitochondria, and prevents SYNJ2BP-COX16 induced mitochondrial fission, cell proliferation and metastasis. Based on these data, SYNJ2BP-COX16 promotes breast cancer progression through the phosphorylation of DRP1 and subsequent induction of mitochondrial fission, indicating that SUMOylation at the K107 residue of SYNJ2BP-COX16 is a novel potential treatment target for breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2022.215871DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
mitochondrial fission
20
synj2bp-cox16 promotes
8
promotes breast
8
cancer progression
8
fusion proteins
8
cell proliferation
8
proliferation metastasis
8
drp1 mitochondria
8
drp1 phosphorylation
8

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

the evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.

View Article and Find Full Text PDF

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!