Life-Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping.

Environ Sci Technol

Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

Published: September 2022

Future ships need to operate with low or possibly zero greenhouse gas (GHG) emissions while ensuring low influence on other environmental impacts and that the operation is economically feasible. This study conducts a life-cycle evaluation of potential decarbonization solutions involving selected energy carriers (electrolytic hydrogen, electro-ammonia, electro-methanol, and electricity) in different propulsion system setups (engines, fuel cells, and carbon capture technologies) in terms of environmental impact and costs. The results of the study show that the assessed decarbonization options are promising measures to reduce maritime GHG emissions with low-carbon-intensive electricity. The same order of GHG reduction is shown to be possible independent of the propulsion system and energy carrier used onboard. However, the carbon abatement cost ranges from 300 to 550 €/tCOeq, and there is a trade-off with environmental impacts such as human toxicity (cancer and non-cancer effects) and freshwater ecotoxicity mainly linked with the wind infrastructure used for electricity production. Electro-ammonia in fuel cells is indicated to be effective in terms of the carbon abatement cost followed by the so-called HyMethShip concept. The higher abatement cost of all options compared to current options indicates that major incentives and policy measures are required to promote the introduction of alternative fuel and propulsion systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454245PMC
http://dx.doi.org/10.1021/acs.est.2c03016DOI Listing

Publication Analysis

Top Keywords

abatement cost
12
propulsion systems
8
ghg emissions
8
environmental impacts
8
propulsion system
8
fuel cells
8
carbon abatement
8
life-cycle assessment
4
assessment costing
4
costing fuels
4

Similar Publications

Nonnegligible transition risks towards net-zero economy: Lessons from green finance initiatives in China.

J Environ Manage

January 2025

Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; Faculty of Finance, City University of Macau, Macao, China. Electronic address:

Owing to critical policy significance, a growing body of literature has been predominantly concentrating on the social welfare benefits brought by green finance (GF) initiatives. However, there is a paucity of research that quantifies the economic costs of GF initiatives on carbon reduction, raising the increasing concerns about the irreconcilable climate-economy trade-offs. To end this, the present study systematically investigates the influence of GF initiatives on the carbon-related marginal abatement cost (MAC) using two competing hypotheses: regulatory versus technical effects.

View Article and Find Full Text PDF

Carbon dioxide (CO) accumulation and emission are well-known features of deep lakes, making them a significant unavoidable carbon source to the atmosphere. In the case of meromictic lakes, degassing devices are installed to controllably release through a pipe the CO trapped in the bottom waters. Otherwise, the gas is emitted diffusely at the air-water surface or accidentally through a limnic eruption when the saturation limit is reached.

View Article and Find Full Text PDF

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.

View Article and Find Full Text PDF

Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!