A computational and experimental framework for quantifying flow-enhanced nucleation (FEN) in polymers is presented and demonstrated for an industrial-grade linear low-density polyethylene (LLDPE). Experimentally, kinetic measurements of isothermal crystallization were performed by using fast-scanning calorimetry (FSC) for melts that were presheared at various strain rates. The effect of shear on the average conformation tensor of the melt was modeled with the discrete slip-link model (DSM). The conformation tensor was then related to the acceleration in nucleation kinetics by using an expression previously validated with nonequilibrium molecular dynamics (NEMD). The expression is based on the nematic order tensor of Kuhn segments, which can be obtained from the conformation tensor of entanglement strands. The single adjustable parameter of the model was determined by fitting to the experimental FSC data. This expression accurately describes FEN for the LLDPE, representing a significant advancement toward the development of a fully integrated processing model for crystallizable polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c03460DOI Listing

Publication Analysis

Top Keywords

conformation tensor
12
flow-enhanced nucleation
8
experiments modeling
4
modeling flow-enhanced
4
nucleation lldpe
4
lldpe computational
4
computational experimental
4
experimental framework
4
framework quantifying
4
quantifying flow-enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!