The protozoan parasite Plasmodium falciparum causes the most severe form of malaria and is highly dependent on glycolysis. Glycolytic enzymes were shown to be massively redox regulated, inter alia via oxidative post-translational modifications (oxPTMs) of their cysteine residues. In this study, we identified P. falciparum pyruvate kinase (PfPK) C49 and C343 as amino acid residues essentially involved in maintaining structural and functional integrity of the enzyme. The mutation of these cysteines resulted in an altered substrate affinity, lower enzymatic activities, and, as studied by X-ray crystallography, conformational changes within the A-domain where the substrate binding site is located. Although the loss of a cysteine evoked an impaired catalysis in both mutants, the effects observed for mutant C49A were more severe: multiple conformational changes, caused by the loss of two hydrogen bonds, impeded proper substrate binding and thus the transfer of phosphate upon catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2022.08.001 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.
Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.
View Article and Find Full Text PDFInt J Pept Res Ther
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.
View Article and Find Full Text PDFAnim Sci J
January 2025
Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.
View Article and Find Full Text PDFChemSusChem
January 2025
Nanjing Normal University, School of Food Science and Pharmaceutical Engineering, No. 2 Xuelin Road, 210023, Nanjing, CHINA.
Beyond directed evolution, ancestral sequence reconstruction (ASR) has emerged as a powerful strategy for engineering proteins with superior functional properties. Herein, we harnessed ASR to uncover robust PET hydrolase variants, expanding the repertoire of PET-degrading enzymes and providing deeper insights into the underlying mechanisms of PET hydrolysis. As a result, ASR1-PETase, featuring a unique cysteine catalytic site, was discovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!