Motion vision: Drosophila neural pathways that go with the visual flow.

Curr Biol

Laboratory of Sensorimotor Integration, Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal. Electronic address:

Published: August 2022

Processing visual motion cues to interpret self-motion, the movement of others, and the environment's structure is vital to all animals, whether prey or predator. A new study in Drosophila identifies multiple pathways likely contributing to visual motion-dependent computations and behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2022.07.023DOI Listing

Publication Analysis

Top Keywords

motion vision
4
vision drosophila
4
drosophila neural
4
neural pathways
4
pathways with the
4
with the visual
4
visual flow
4
flow processing
4
processing visual
4
visual motion
4

Similar Publications

Purpose: This study investigated how obstacle contrast altered gait behavior of healthy younger and older adults.

Methods: Twenty normally sighted adults, 11 older (mean [standard deviation] age, 68.1 [5.

View Article and Find Full Text PDF

Not all corals are attached to the substrate; some taxa are solitary and free-living, allowing them to migrate into preferred habitats. However, the lifestyle of these mobile corals, including how they move and navigate for migration, remains largely obscure. This study investigates the specific biomechanics of Cycloseris cyclolites, a free-living coral species, during phototactic behaviour in response to blue and white light stimuli.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Wingbeat frequency estimation is an important aspect for the study of avian flight, energetics, and behavioral patterns, among others. Hummingbirds, in particular, are ideal subjects to test a method for this estimation due to their fast wing motions and unique aerodynamics, which results from their ecological diversification, adaptation to high-altitude environments, and sexually selected displays. Traditionally, wingbeat frequency measurements have been done via "manual" image/sound processing.

View Article and Find Full Text PDF

In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!