Oncolytic avian reovirus σA-modulated fatty acid metabolism through the PSMB6/Akt/SREBP1/acetyl-CoA carboxylase pathway to increase energy production for virus replication.

Vet Microbiol

Ph.D Program in translational Medicine, National Chung Hsing University, Taichung, Taiwan; Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan. Electronic address:

Published: October 2022

We have demonstrated previously that the σA protein of avian reovirus (ARV) functions as an activator of cellular energy, which upregulates glycolysis and the TCA cycle for virus replication. To date, there is no report with respect to σA-modulated regulation of cellular fatty acid metabolism. This study reveals that the σA protein of ARV inhibits fatty acids synthesis and enhance fatty acid oxidation by upregulating PSMB6, which suppresses Akt, sterol regulatory element-binding protein 1 (SREBP1), acetyl-coA carboxylase α (ACC1), and acetyl-coA carboxylase β (ACC2). SREBP1 is a transcription factor involved in fatty acid and cholesterol biosynthesis. Overexpression of SREBP1 reversed σA-modulated suppression of ACC1 and ACC2. In this work, a fluorescence resonance energy transfer-based genetically encoded indicator, Ateams, was used to study σA-modulated inhibition of fatty acids synthesis which enhances cellular ATP levels in Vero cells and human cancer cell lines (A549 and HeLa). By using Ateams, we demonstrated that σA-modulated inhibition of Akt, SREBP1, ACC1, and ACC2 leads to increased levels of ATP in mammalian and human cancer cells. Furthermore, knockdown of PSMB6 or overexpression of SREBP1 reversed σA-modulated increased levels of ATP in cells, indicating that PSMB6 and SREBP1 play important roles in ARV σA-modulated cellular fatty acid metabolism. Furthermore, we found that σA mutant protein loses its ability to enter the nucleolus, which impairs its ability to regulate fatty acid metabolism and does not increase ATP formation, suggesting that nucleolus entry of σA is critical for regulating cellular fatty acid metabolism to generate more energy for virus replication. Collectively, this study provides novel insights into σA-modulated inhibition of fatty acid synthesis and enhancement of fatty acid oxidation to produce more energy for virus replication through the PSMB6/Akt/SREBP1/ACC pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2022.109545DOI Listing

Publication Analysis

Top Keywords

fatty acid
36
acid metabolism
20
virus replication
16
cellular fatty
12
σa-modulated inhibition
12
fatty
11
acid
9
avian reovirus
8
σa-modulated
8
σa protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!