Structural engineering and electronic state tuning optimization of molybdenum-doped cobalt hydroxide nanosheet self-assembled hierarchical microtubules for efficient electrocatalytic oxygen evolution.

J Colloid Interface Sci

College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China. Electronic address:

Published: December 2022

Cobalt-based hydroxide are ideal candidates for the oxygen evolution reaction. Herein, we use molybdenum oxide nanorods as sacrificial templates to construct a self-supporting molybdenum-doped cobalt hydroxide nanosheet hierarchical microtubule structure based on a structural engineering strategy to improve the active area of the catalyst. X-ray-based spectroscopic tests revealed that Mo (VI) with tetrahedral coordination intercalated into the interlayer of cobalt hydroxide, promoting interlayer separation. At the same time, Mo is connected with Co through oxygen bonds, which promotes the transfer of Co charges to Mo and reduces the electron cloud density of Co ions. In 1 M KOH, optimized molybdenum-doped cobalt hydroxide nanosheet microtubules only needs an overpotential of 288 mV to drive a current density of 10 mA cm, which is significantly better than that of pure Co(OH) nanosheets and RuO. Structural engineering and electronic state regulation can effectively improve the oxygen evolution activity of cobalt-based hydroxide, which provides a design idea for the development of efficient oxygen evolution catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.069DOI Listing

Publication Analysis

Top Keywords

cobalt hydroxide
16
oxygen evolution
16
structural engineering
12
molybdenum-doped cobalt
12
hydroxide nanosheet
12
engineering electronic
8
electronic state
8
cobalt-based hydroxide
8
hydroxide
6
oxygen
5

Similar Publications

Scandium (Sc) extraction from iron and aluminum waste is a promising technique for the recycling and valorization of laterite nickel ore waste. Iron and aluminum waste is one source of scandium during preparation of nickel and cobalt hydroxide by wet smelting of laterite nickel ore. The content of Sc is notably higher than that of the raw materials, as the element is enriched in the iron and aluminum waste.

View Article and Find Full Text PDF

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).

View Article and Find Full Text PDF

Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.

View Article and Find Full Text PDF
Article Synopsis
  • The intrinsic mechanisms of the oxygen evolution reaction (OER) remain complex and not fully understood, particularly how the arrangement of metal centers affects OER rates.
  • Researchers developed cobalt hydroxide-based nanoboxes containing tetrahedrally coordinated Co(II) centers, which transform into active Co(IV) species during the OER process.
  • The study highlights how the local geometry of metal centers influences the oxygen evolution kinetics, showing that partial iron incorporation enhances this activation, while traditional structures like CoOOH and Co-FeOOH limit the formation of active Co(IV) species.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!