Influence of the Alkyl Chain Length of (Pentafluorophenylalkyl) Ammonium Salts on Inverted Perovskite Solar Cell Performance.

ACS Appl Mater Interfaces

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Published: September 2022

We study the effect of (2,3,4,5,6-pentafluorophenyl)alkylamine additives with differing alkyl chain lengths (methyl, ethyl, and -propyl) on the performance of methylammonium lead triiodide (MAPbI) perovskite solar cells. The results show that the length of the alkyl chain between the 2,3,4,5,6-pentafluorophenyl group and ammonium moiety has a critical effect on the perovskite film structure and subsequent device performance. The 2,3,4,5,6-pentafluorophenyl ammonium additive with the shortest linking group (a methylene unit), namely (2,3,4,5,6-pentafluorophenyl)methylammonium iodide, was found to be distributed throughout the bulk of the perovskite film with a 2D phase only being observable at high concentrations (>30 mol%). In contrast, the additives with ethyl and -propyl linking groups phase-separate during solution processing and are found to concentrate at the surface of the perovskite film. Photoluminescence measurements showed that the fluorinated additives passivated the surface defects on the perovskite grains. Of the three additives, inverted devices containing 0.32 mol% of the 2,3,4,5,6-pentafluorophenyl ammonium additive with the methylene linking group achieved a maximum power conversion efficiency of 22.0%, with the device efficiency decreasing with increasing additive concentration. In contrast, the devices composed of the additive with the longest alkyl linker, 3-(2,3,4,5,6-pentafluorophenyl)propylammonium iodide, had the poorest performance, with PCEs less than that of the neat MAPbI control and decreasing with increasing additive concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c08733DOI Listing

Publication Analysis

Top Keywords

alkyl chain
12
perovskite film
12
perovskite solar
8
ethyl -propyl
8
23456-pentafluorophenyl ammonium
8
ammonium additive
8
linking group
8
decreasing increasing
8
increasing additive
8
additive concentration
8

Similar Publications

Construction of Supramolecular Polymer Network Elastomers Based on Pillar[5]arene/Alkyl Chain Host-Guest Interactions.

ACS Macro Lett

January 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

Differences in Rejuvenation Mechanisms and Physical Properties of Aged Styrene-Butadiene-Styrene (SBS)-Modified Bitumen by Mono-Epoxy and Di-Epoxy Compounds.

Polymers (Basel)

December 2024

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.

Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.

View Article and Find Full Text PDF

In recent years, increased attention has been given to the effective use of chitin nanofibers (ChNFs). We have developed a method to fabricate thinner chitin nanomaterials, called scale-down chitin nanofibers (SD-ChNFs), by a bottom-up procedure at the nanoscale level, with subsequent disintegration by electrostatic repulsion. The surface modification of SD-ChNFs is anticipated to provide new properties and functions for their practical applications.

View Article and Find Full Text PDF

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!