The polyketide synthase StlA is involved in inducing aggregation in Polysphondylium violaceum.

Biosci Biotechnol Biochem

Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan.

Published: October 2022

AI Article Synopsis

  • In the social amoeba Dictyostelium discoideum, the polyketide MPBD plays a vital role in regulating cAMP signaling for cell aggregation and spore maturation.
  • The polyketide synthase StlA is responsible for the biosynthesis of MPBD and is conserved across major groups of social amoebas.
  • Research in Polysphondylium violaceum showed that StlA is essential for cell aggregation but not for spore maturation, and MPBD can reverse aggregation defects in StlA knockout mutants while chemotaxis remains unaffected.

Article Abstract

In the social amoeba Dictyostelium discoideum, the polyketide MPBD (4-methyl-5-pentylbenzene-1,3-diol) regulates the gene expressions of cAMP signaling to make cells aggregation-competent and also induces spore maturation. The polyketide synthase StlA is responsible for MPBD biosynthesis in D. discoideum and appears to be conserved throughout the major groups of the social amoeba (Dictyostelia). In this study, we analyzed the function of StlA in Polysphondylium violaceum by identifying the gene sequence and creating the knockout mutants. We found that Pv-stlA- mutants had defects only in cell aggregation but not in spore maturation, indicating that the function of StlA in inducing spore maturation is species-specific. We also found that MPBD could rescue the aggregation defect in Pv-stlA- mutants whereas the mutants normally exhibited chemotaxis to their chemoattractant, glorin. Our data suggest that StlA is involved in inducing aggregation in P. violaceum by acting on signaling pathways other than chemotaxis in P. violaceum.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbac144DOI Listing

Publication Analysis

Top Keywords

spore maturation
12
polyketide synthase
8
synthase stla
8
stla involved
8
involved inducing
8
inducing aggregation
8
polysphondylium violaceum
8
social amoeba
8
function stla
8
pv-stla- mutants
8

Similar Publications

Purpose: Henneguya sp. is a crucial myxosporean parasite known to cause milky flesh or tapioca disease in the freshwater fish population, leading to heavy mortality. Studies to investigate its host range and to monitor their prevalence in wild and aquacultured fish are necessary.

View Article and Find Full Text PDF

The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).

View Article and Find Full Text PDF

Separation of life stages within anaerobic fungi (Neocallimastigomycota) highlights differences in global transcription and metabolism.

Fungal Genet Biol

December 2024

University of California, Santa Barbara, Department of Chemical Engineering, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, United States. Electronic address:

Anaerobic gut fungi of the phylum Neocallimastigomycota are microbes proficient in valorizing low-cost but difficult-to-breakdown lignocellulosic plant biomass. Characterization of different fungal life stages and how they contribute to biomass breakdown are critical for biotechnological applications, yet we lack foundational knowledge about the transcriptional, metabolic, and enzyme secretion behavior of different life stages of anaerobic gut fungi: zoospores, germlings, immature thalli, and mature zoosporangia. A Miracloth-based technique was developed to enrich cell pellets with zoospores - the free-swimming, flagellated, young life stage of anaerobic gut fungi.

View Article and Find Full Text PDF

Ganoderma lucidum spores are tiny mature germ cells ejected from the abaxial side of the pileus and were responsible for multiple pharmacological properties. The defatted G. lucidum spores are the byproducts after the extraction of G.

View Article and Find Full Text PDF

Saprolegniasis is one of the most dangerous fungal diseases of fish, causing significant mortality in fish hatcheries and young ones. The present study aimed to isolate and characterize the causative fungus from fingerlings of Pangasianodon hypophthalmus cultured intensively in freshwater cages in Indian reservoirs and to determine minimum inhibitory concentrations of different antifungal compounds against the fungal hyphae and zoospores. The fungal isolates grown on potato dextrose agar showed an abundance of gemmae, elongated mycelia, non-septate hyphae, primary zoospores, mature zoosporangia with numerous zoospores, cysts with bundles of long hairs and were further identified as Saprolegnia parasitica following PCR amplification and sequencing of internal transcribed spacer region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!