A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Epigenetics of Anxiety Pathophysiology: A DNA Methylation and Histone Modification Focused Review. | LitMetric

Anxiety is one of the most common psychiatric disorders diagnosed in the United States today. Like all mental illnesses, anxiety pathology includes genetic, molecular, somatic, and behavioral characteristics. Specific brain regions implicated in anxiety include the prefrontal cortex, amygdala, hippocampus, and hypothalamus. Together, these regions regulate fear-related learning and memory processes, and are innervated by neuronal projections that use glutamate and GABA as neurotransmitters. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) are also implicated in anxiety. This review discusses the neuroepigenetics of the anxiety phenotype. While studying such changes is limited to postmortem brain studies or peripheral tissue acquisition in humans, the use of animals to model anxiety phenotypes has made epigenetic research possible. In this review, we summarize and discuss a plethora of DNA methylation, histone modification, and associated gene expression differences underscoring the anxiety phenotype. The findings we outline include expression changes of various DNA methyltransferases and changes in histone modifications that affect the hypothalamic pituitary adrenal axis and stress response as well as GABA, glutamate, and BDNF signaling in the PFC, amygdala, hypothalamus, and hippocampus. Furthermore, there have been studies showing that anxiety behaviors and biological scars from stress can be reversed using histone deacetylase inhibitors, and we discuss ideas for the future of treatment. In this review, we hope that by compiling much of the data pertaining to DNA methylation and histone modifications animal studies we are able to highlight potential avenues for future research despite existing limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131535PMC
http://dx.doi.org/10.1523/ENEURO.0109-21.2021DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
methylation histone
12
histone modification
8
anxiety
8
implicated anxiety
8
anxiety phenotype
8
histone modifications
8
histone
5
epigenetics anxiety
4
anxiety pathophysiology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!