Objective: To evaluate the effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on the kidney-risk urinary proteomic classifier (CKD273) in persons with type 2 diabetes (T2D) and albuminuria.

Research Design And Methods: In a double-blind, randomized, controlled, crossover trial, we assigned participants with T2D and urinary albumin to creatinine ratio (UACR) ≥30 mg/g to receive dapagliflozin or matching placebo added to guideline-recommended treatment (ClinicalTrial.gov identifier NCT02914691). Treatment periods lasted 12 weeks, when crossover to the opposing treatment occurred. The primary outcome was change in CKD273 score. Secondary outcomes included regression from high-risk to low-risk CKD273 pattern using the prespecified cutoff score of 0.154. The primary outcome was assessed using paired t test between end-to-end CKD273 scores after dapagliflozin and placebo treatment. The McNemar test was used to assess regression in risk category.

Results: A total of 40 participants were randomized and 32 completed the trial with intact proteomic measurements. Twenty-eight (88%) were men, the baseline mean (SD) age was 63.0 (8.3) years, mean (SD) diabetes duration was 15.4 (4.5) years, mean HbA1c was 73 (14) mmol/mol (8.8% [1.3%]), and median (interquartile range) UACR was 154 (94, 329) mg/g. Dapagliflozin significantly lowered CKD273 score compared with placebo (-0.221; 95% CI -0.356, -0.087; P = 0.002). Fourteen participants exhibited a high-risk pattern after dapagliflozin treatment compared with 24 after participants placebo (P = 0.021).

Conclusions: Dapagliflozin added to renin-angiotensin system inhibition reduced the urinary proteomic classifier CKD273 in persons with T2D and albuminuria, paving the way for the further investigation of CKD273 as a modifiable kidney risk factor.

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc22-1157DOI Listing

Publication Analysis

Top Keywords

urinary proteomic
12
classifier ckd273
12
ckd273
8
type diabetes
8
proteomic classifier
8
ckd273 persons
8
primary outcome
8
ckd273 score
8
dapagliflozin
7
treatment
5

Similar Publications

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.

View Article and Find Full Text PDF

Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers.

Biomolecules

January 2025

BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs).

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a progressive condition characterized by declining renal function, with limited biomarkers to predict its progression. The early identification of prognostic biomarkers is crucial for improving patient care and therapeutic strategies. This follow-up study investigated urinary proteomics and clinical outcomes in 18 CKD patients (stages 1-3) and 15 healthy controls using liquid chromatography-mass spectrometry and Mascot-SwissProt for protein identification.

View Article and Find Full Text PDF

Quantifying urinary catecholamines and metanephrines is essential for the clinical screening and diagnosis of neuroendocrine tumours. HPLC with electrochemical detection (HPLC-ECD) is commonly used for this type of analysis but requires extensive sample cleanup. Simple and rapid dilute-and-shoot LC-multiple-reaction monitoring (MRM)-MS assays have been developed for quantitating these analytes in urine but have not yet been validated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.

View Article and Find Full Text PDF

Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!