Identification of 45S rDNA in Passiflora using low coverage sequencing: analysis of GC content and chromosomal localization.

Mol Biol Rep

Laboratório de Melhoramento de Plantas (LAMEP), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rod. Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brasil.

Published: September 2022

AI Article Synopsis

  • The 45S rDNA serves as a key chromosomal marker for studying the genetics of Passiflora, with PCR amplification being more effective than traditional methods for locating it in chromosomes.
  • Low-coverage sequencing of three Passiflora species revealed similar 18S and 26S rDNA sequences, and cytological localization of 26S rDNA was confirmed in P. edulis and related species.
  • The study established a connection between CMA banding patterns and GC content, indicating that both GC quantity and structure play roles in chromosomal behavior.

Article Abstract

Background: The 45S rDNA is considered the most useful chromosomal marker for cytogenetic analysis of Passiflora. Amplification of 45S rDNA sequence via PCR are more advantageous than sequence maintenance in vectors for chromosomal hybridization via FISH. We aimed both to identify 45S rDNA by sequencing data for chromosomal localization and to verify the relationship between GC content and CMA/DAPI banding.

Methods And Results: Low-coverage sequencing of Passiflora alata, P. cincinnata, and P. edulis was performed, and 45S rDNA units were identified using RepeatExplorer. The 45S rDNA units were used to construct a neighbor-joining tree to verify the similarities between the three species' 18S and 26S rDNA sequences. Clusters (CL)116 (P. alata), CL71 (P. cincinnata), and CL116 (P. edulis) were remarkably similar among the three species, and the 26S rDNA sequences of the clusters were similar to those of Populus tremuloides, Salix interior, and Averrhoa carambola (98% identity). The 26S rDNA was cytologically localized in the chromosomes of P. edulis, P. bahiensis, and the backcrossed hybrid (P. sublanceolata vs. HD13). The hybridization transfer capacity was evaluated in Citrus sunki and Cucumis melo. Finally, a chromosomal pair with a heteromorphic 26S rDNA site was observed in P. edulis, which was the same to that observed for CMA.

Conclusion: The amplification of the 26S rDNA in Passiflora via PCR and the chromosomal localization in Passiflora and other plant species was successfully achieved. The CMA bands were found to be related not only to the amount of GC but also to its structure and the number of repetitions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07686-6DOI Listing

Publication Analysis

Top Keywords

45s rdna
24
26s rdna
20
chromosomal localization
12
rdna
11
rdna passiflora
8
rdna units
8
rdna sequences
8
sequences clusters
8
chromosomal
6
passiflora
5

Similar Publications

The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription.

View Article and Find Full Text PDF

L. and L. are valuable and promising food crops for multi-purpose use that are distributed worldwide in temperate, subtropical, and tropical zones.

View Article and Find Full Text PDF

A recent large-scale intraspecific IR expansion and evolutionary dynamics of the plastome of Peucedanum japonicum.

Sci Rep

January 2025

Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Peucedanum japonicum (PJ), a member of the Apiaceae family, is widely distributed and cultivated in East Asian countries for edible and functional foods. In this study, we compared the plastid genomes (plastomes) and 45S nuclear ribosomal DNA (45S nrDNA) simultaneously from 10 PJ collections. Plastome-based phylogenetic analysis showed that the PJ accessions were monophyletic within the genus Peucedanum.

View Article and Find Full Text PDF

Allium chromosome evolution and DNA sequence localization.

Mol Biol Rep

December 2024

Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, LE1 7RH, UK.

Background: Molecular cytogenetics, utilizing DNA probes, serves as a critical tool for mapping genes to the physical structures of chromosomes.

Methods: In this study, we examined three Allium species: A. cepa L.

View Article and Find Full Text PDF

Comprehensive mapping of molecular cytogenetic markers in pitaya () and related species.

Front Plant Sci

December 2024

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China.

Pitaya (; 2n=22) is an important fruit crop from the family, originally domesticated in Mexico and the USA, and is now widely cultivated for its nutritional benefits. It is characterized by its distinctive triangular-shaped stems and large, showy flowers, thriving in arid and semi-arid environments, particularly in hot, dry climates. However, systematic chromosomal studies, including chromosomal mapping of cytogenetic markers in pitaya, are limited, presenting challenges for its cytogenetic improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!