Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl. Defects in KAI2 functions resulted in delayed and inhibited cotyledon opening in kai2 seeds compared with WT seeds, suggesting that KAI2 played an important role in enhancing seed germination under salinity. Salt-stressed kai2 plants displayed more phenotypic aberrations, biomass reduction, water loss and oxidative damage than WT plants. kai2 shoots accumulated significantly more Na+ and thus had a lower K+/Na+ ratio, than WT, indicating severe ion toxicity in salt-stressed kai2 plants. Accordingly, kai2 plants displayed a lower expression of genes associated with Na+ homeostasis, such as SALT OVERLY SENSITIVE (SOS) 1, SOS2, HIGH-AFFINITY POTASSIUM TRANSPORTER 1;1 (HKT1;1) and CATION-HYDROGEN EXCHANGER 1 (NHX1) than WT plants. WT plants maintained a better glutathione level, glutathione-related redox status and antioxidant enzyme activities relative to kai2 plants, implying KAI2's function in oxidative stress mitigation in response to salinity. kai2 shoots had lower expression levels of genes involved in the biosynthesis of strigolactones (SLs), salicylic acid and jasmonic acid and the signaling of abscisic acid and SLs than those of WT plants, indicating interactive functions of KAI2 signaling with other hormone signaling in modulating plant responses to salinity. Collectively, these results underpin the likely roles of KAI2 in the alleviation of salinity effects in plants by regulating several physiological and biochemical mechanisms involved in ionic and osmotic balance, oxidative stress tolerance and hormonal crosstalk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcac121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!