The efficiency of reactive oxygen species (ROS)-mediated cancer therapy is restrained by intrinsic characteristics in the tumor microenvironment (TME), such as overexpressed glutathione (GSH), hypoxia and limited efficiency of H O . In this work, intelligent copper-dropped calcium carbonate loading sonosensitizer Ce6 nanoparticles (Cu/CaCO @Ce6, CCC NPs) are established to realize TME-responsive self-supply of oxygen and successively Ca -overloading-strengthened chemodynamic therapy/sonodynamic therapy (CDT/SDT). CCC NPs release Ca , Cu , and Ce6 in weakly acid and GSH-excessive TME. Released Cu can not only consume GSH and turn into Cu via a redox reaction, but also provide CDT-creating hydroxyl radicals through the Fenton-like reaction. Under ultrasound irradiation, the intracellular oxidative stress is amplified profoundly relying on singlet oxygen outburst from SDT. Moreover, Ca influx aggravates the mitochondrial disruption, which further accelerates the oxidation level. The facile and feasible design of the Cu-dropped CaCO -based nanoregulators will be further developed as a paradigm in ROS-contributed cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202204047DOI Listing

Publication Analysis

Top Keywords

cancer therapy
8
ccc nps
8
tumor microenvironment-responsive
4
microenvironment-responsive cu/caco
4
cu/caco -based
4
-based nanoregulator
4
nanoregulator mitochondrial
4
mitochondrial homeostasis
4
homeostasis disruption-enhanced
4
disruption-enhanced chemodynamic/sonodynamic
4

Similar Publications

Essential Thrombocythemia: A Review.

JAMA

January 2025

CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy.

Importance: Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons.

View Article and Find Full Text PDF

Background: Race/ethnicity may affect outcomes in metastatic breast cancer (MBC) due to biological and social determinants. We evaluated the impact of race/ethnicity on clinical, socioeconomic, and genomic characteristics, clinical trial participation, and receipt of genotype-matched therapy among patients with MBC.

Methods: A retrospective study of patients with MBC who underwent cell-free DNA testing (cfDNA, Guardant360â, 74 gene panel) between 11/2016 and 11/2020 was conducted.

View Article and Find Full Text PDF

The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!