Adverse reactions during and shortly after infusing asparaginase for the treatment of acute lymphoblastic leukemia can increase in severity with later doses, limiting further use and increasing relapse risk. Although asparaginase is associated with hyperammonemia, the magnitude of the increase in serum ammonia immediately after the infusion and in response to multiple infusions has not been examined. The concurrence of hyperammonemia and infusion reactions was studied using weaned juvenile pigs that received 12 infusions of Erwinia asparaginase (Erwinase; 1250 U/kg) over 28 days, with two 5-day recovery periods without asparaginase after the eighth and eleventh doses. Infusion reactions and prolonged hyperammonemia (>50 µM ammonia 48 h after the infusion) began after the fourth dose and increased with later doses. Dense sampling for 60 min revealed an acute phase of hyperammonemia that peaked within 20 min after starting the first infusion (298 + 62 µM) and lasted less than 1 h, without apparent symptoms. A pronounced acute hyperammonemia after the final infusion (1260 + 250 µM) coincided with severe symptoms and one mortality during the infusion. The previously unrecognized acute phase of hyperammonemia associated with asparaginase infusion coincides with infusion reactions. The juvenile pig is a translational animal model for understanding the causes of acute and chronic hyperammonemia, differentiating from hypersensitivity reactions, and for improving infusion protocols to reduce acute hyperammonemia and to allow the continued use of asparaginase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397007 | PMC |
http://dx.doi.org/10.3390/medsci10030043 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt.
Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.
View Article and Find Full Text PDFWorld J Surg
January 2025
Management Office for Health Data, China Medical University and Hospital, Taichung, Taiwan.
Objectives: Acute liver failure poses a significant challenge in surgical critically ill patients. Treatments typically focus on physiological support and alleviation of hepatic insult. This study aims to evaluate the role of high-volume plasma exchange (HVPE) in surgical critically ill patients with medical jaundice and hepatic failure.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States.
Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Pediatric Unit, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France.
Propionic aciduria (PA) and methylmalonic aciduria (MMA) are rare inherited disorders caused by defects in the propionate metabolic pathway. PA due to propionyl coenzyme A carboxylase deficiency results in accumulation of propionic acid, while in MMA, deficiency in methylmalonyl coenzyme A mutase leads to accumulation of methylmalonic acid. Hyperammonemia is related to a secondary deficiency of N-acetylglutamate (NAG), the activator of carbamoyl phosphate synthetase 1, which is an irreversible rate-limiting enzyme in the urea cycle.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Northeast Georgia Medical Center Gainesville, Gainesville, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!