Ventral stress fibers (VSFs) are contractile actin fibers dynamically attached to cell-matrix focal adhesions. VSFs are critical in cellular traction force production and migration. VSFs vary from randomly oriented short, thinner fibers to long, thick fibers that span along the whole long axis of a cell. De novo VSF formation was shown to occur by cortical actin mesh condensation or by crosslinking of dorsal stress fibers and transverse arcs at the cell front. However, the formation of long VSFs that extend across the whole cell axis is not well understood. Here, we report a novel phenomenon of VSF merging in migratory fibroblast cells, which is guided by mechanical force balance and contributes to VSF alignment along the long cell axis. The mechanism of VSF merging involves two steps: connection of two ventral fibers by an emerging myosin II bridge at an intervening adhesion and intervening adhesion dissolution. Our data indicate that these two steps are interdependent: slow adhesion disassembly leads to the slowing of the myosin bridge formation. Cellular data and computational modeling show that the contact angle between merging fibers decides successful merging, with shallow angles leading to merge failure. Our data and modeling further show that merging increases the share of uniformly aligned long VSFs, likely contributing to directional traction force production. Thus, we characterize merging as a process for dynamic reorganization of VSFs with functional significance for directional cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9770016 | PMC |
http://dx.doi.org/10.1002/cm.21722 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115.
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.
Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.
Sci Adv
January 2025
New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.
Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!