Highly Efficient Quadruped DNA Walker Guided by Ordered DNA Tracks for Rapid and Ultrasensitive Electrochemical Detection of miRNA-21.

Anal Chem

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Published: September 2022

Herein, a long period liner DNA tandem (Lr-DNT) was intelligently designed as DNA track for quadruped DNA walker (q-walker) to run in an orderly and efficient manner, which could be applied to construct an electrochemical biosensor for rapid and ultrasensitive detection of microRNA-21 (miRNA-21). Impressively, benefiting from the orderliness and equidistance of Lr-DNT, the q-walker could be endowed with a high controllability, directionality as well as a quite short reaction time down to 20 min compared with those of traditional DNA walkers walked on the stochastic tracks. Once the target miRNA-21 interacted with the locked q-walker, the q-walker could be activated to expeditiously cleave Lr-DNT for releasing amounts of signal probes ferrocene (Fc) with the assistance of the Nt.BbvCI enzyme. This way, the developed q-walker could not only readily overcome the problem of low reaction efficiency but also address the drawback of time consumption in a previous strategy. As a proof of concept, the prepared biosensor could accomplish sensitive detection of target miRNA-21 with a detection limit down to 31 aM. As a result, this tactic gave impetus to design high-performance sensing platform with ultimate application in clinical sample analysis and nucleic acid based cancer diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c03083DOI Listing

Publication Analysis

Top Keywords

quadruped dna
8
dna walker
8
rapid ultrasensitive
8
target mirna-21
8
dna
6
q-walker
5
highly efficient
4
efficient quadruped
4
walker guided
4
guided ordered
4

Similar Publications

Highly Efficient Quadruped DNA Walker Guided by Ordered DNA Tracks for Rapid and Ultrasensitive Electrochemical Detection of miRNA-21.

Anal Chem

September 2022

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Herein, a long period liner DNA tandem (Lr-DNT) was intelligently designed as DNA track for quadruped DNA walker (q-walker) to run in an orderly and efficient manner, which could be applied to construct an electrochemical biosensor for rapid and ultrasensitive detection of microRNA-21 (miRNA-21). Impressively, benefiting from the orderliness and equidistance of Lr-DNT, the q-walker could be endowed with a high controllability, directionality as well as a quite short reaction time down to 20 min compared with those of traditional DNA walkers walked on the stochastic tracks. Once the target miRNA-21 interacted with the locked q-walker, the q-walker could be activated to expeditiously cleave Lr-DNT for releasing amounts of signal probes ferrocene (Fc) with the assistance of the Nt.

View Article and Find Full Text PDF

Vertical clinging is a specialized form of locomotion characteristic of the primate family Callitrichidae. Vertical clinging requires these pronograde primates to maintain a vertical posture, so the protraction of their forelimbs must resist gravity. Since pronograde primates usually move as horizontal quadrupeds, we hypothesized that the supraspinatus muscle of vertical clingers would present specific characteristics related to the functional requirements imposed on the shoulder area by vertical clinging.

View Article and Find Full Text PDF

The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families.

View Article and Find Full Text PDF

The nucleotide sequence for pituitary prolactin cDNA from the marsupial bandicoot (Isoodon macrourus) was determined by reverse transcription-polymerase chain reaction and 5'/3' rapid amplification of cDNA ends. The deduced amino acid sequence showed high sequence identity with brushtail possum prolactin (95%) and all of the expected structural features of a quadruped prolactin. A prolactin gene tree was constructed and rates of evolution calculated for bandicoot, possum, opossum and several mammalian and non-mammalian prolactins.

View Article and Find Full Text PDF

Overlapping cDNA partial clones of pituitary prolactin from the marsupial brushtail possum (Trichosurus vulpecula) were isolated and sequenced. The nucleotide and deduced amino acid sequences showed high sequence identity with pig prolactin (84.3 and 92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!