Unlabelled: With adverse industrial effects on the global landscape, climate change is imploring the global economy to adopt sustainable solutions. The ongoing evolution of energy efficiency targets massive data collection and Artificial Intelligence (AI) for big data analytics. Besides, emerging on the Internet of Energy (IoE) paradigm, edge computing is playing a rising role in liberating private data from cloud centralization. In this direction, a creative visual approach to understanding energy data is introduced. Building upon micro-moments, which are timeseries of small contextual data points, the power of pictorial representations to encapsulate rich information in a small two-dimensional (2D) space is harnessed through a novel Gramian Angular Fields (GAF) classifier for energy micro-moments. Designed with edge computing efficiency in mind, current testing results on the ODROID-XU4 can classify up to 7 million GAF-converted datapoints with ~ 90% accuracy in less than 30 s, paving the path towards industrial adoption of edge IoE.

Supplementary Information: The online version contains supplementary material available at 10.1007/s10586-022-03704-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387409PMC
http://dx.doi.org/10.1007/s10586-022-03704-1DOI Listing

Publication Analysis

Top Keywords

gramian angular
8
internet energy
8
edge computing
8
energy
5
data
5
lightweight gramian
4
angular field
4
field classification
4
edge
4
classification edge
4

Similar Publications

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique widely utilized in the research of Autism Spectrum Disorder (ASD), providing preliminary insights into the potential biological mechanisms underlying ASD. Deep learning techniques have demonstrated significant potential in the analysis of rs-fMRI. However, accurately distinguishing between healthy control group and ASD has been a longstanding challenge.

View Article and Find Full Text PDF

MXene-based SERS spectroscopic analysis of exosomes for lung cancer differential diagnosis with deep learning.

Biomed Opt Express

January 2025

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.

Lung cancer with heterogeneity has a high mortality rate due to its late-stage detection and chemotherapy resistance. Liquid biopsy that discriminates tumor-related biomarkers in body fluids has emerged as an attractive technique for early-stage and accurate diagnosis. Exosomes, carrying membrane and cytosolic information from original tumor cells, impart themselves endogeneity and heterogeneity, which offer extensive and unique advantages in the field of liquid biopsy for cancer differential diagnosis.

View Article and Find Full Text PDF

Enhancing Time Series Anomaly Detection: A Knowledge Distillation Approach with Image Transformation.

Sensors (Basel)

December 2024

Division of Computer Science & Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea.

Anomaly detection is critical in safety-sensitive fields, but faces challenges from scarce abnormal data and costly expert labeling. Time series anomaly detection is relatively challenging due to its reliance on sequential data, which imposes high computational and memory costs. In particular, it is often composed of real-time collected data that tends to be noisy, making preprocessing an essential step.

View Article and Find Full Text PDF

Data imbalances present a serious problem for intelligent fault diagnosis. They can lead to reduced diagnostic precision, which can jeopardize equipment reliability and safety. Based on that, this paper proposes a novel fault diagnosis method combining the denoising diffusion implicit model (DDIM) with a new convolutional neural network framework.

View Article and Find Full Text PDF

Two-dimensional identification of lower limb gait features based on the variational modal decomposition of sEMG signal and convolutional neural network.

Gait Posture

December 2024

Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Equipment and Detection Technologies, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Robot Sensing and Human-robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China. Electronic address:

Background: Gait feature recognition is crucial to improve the efficiency and coordination of exoskeleton assistance. The recognition methods based on surface electromyographic (sEMG) signals are popular. However, the recognition accuracy of these methods is poor due to ignoring the correlation of the time series of sEMG signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!