Deterministic Light-to-Voltage Conversion with a Tunable Two-Dimensional Diode.

ACS Photonics

Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.

Published: August 2022

Heterojunctions accompanied by energy barriers are of significant importance in two-dimensional materials-based electronics and optoelectronics. They provide more functional device performance, compared with their counterparts with uniform channels. Multimodal optoelectronic devices could be accomplished by elaborately designing band diagrams and architectures of the two-dimensional junctions. Here, we demonstrate deterministic light-to-voltage conversion based on strong dielectric screening effect in a tunable two-dimensional Schottky diode based on semiconductor/metal heterostructure, where the resultant photovoltage is dependent on the intensity of light input but independent of gate voltage. The converted photovoltage across the diode is independent of gate voltage under both monochromatic laser and white light illumination. In addition, the Fermi level of two-dimensional semiconductor area on dielectric SiO is highly gate-dependent, leading to the tunable rectifying effect of this heterostructure, which corporates a vertical Schottky junction and a lateral homojunction. As a result, a constant open-circuit voltage of ∼0.44 V and a hybrid "photovoltaic + photoconduction" photoresponse behavior are observed under 1 μW illumination of 403 nm laser, in addition to an electrical rectification ratio up to nearly 10. The scanning photocurrent mappings under different bias voltages indicate that the switchable operation mode (photovoltaic, photoconduction, or hybrid) depends on the bias-dependent effective energy barrier at the two-dimensional semiconductor-metal interface. This approach provides a facile and reliable solution for deterministic on-chip light-to-voltage conversion and optical-to-electrical interconnects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389648PMC
http://dx.doi.org/10.1021/acsphotonics.2c00727DOI Listing

Publication Analysis

Top Keywords

light-to-voltage conversion
12
deterministic light-to-voltage
8
tunable two-dimensional
8
independent gate
8
gate voltage
8
two-dimensional
6
conversion tunable
4
two-dimensional diode
4
diode heterojunctions
4
heterojunctions accompanied
4

Similar Publications

Deterministic Light-to-Voltage Conversion with a Tunable Two-Dimensional Diode.

ACS Photonics

August 2022

Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.

Heterojunctions accompanied by energy barriers are of significant importance in two-dimensional materials-based electronics and optoelectronics. They provide more functional device performance, compared with their counterparts with uniform channels. Multimodal optoelectronic devices could be accomplished by elaborately designing band diagrams and architectures of the two-dimensional junctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!