Background: Integration of multi-omics data can provide a more complex view of the biological system consisting of different interconnected molecular components, the crucial aspect for developing novel personalised therapeutic strategies for complex diseases. Various tools have been developed to integrate multi-omics data. However, an efficient multi-omics framework for regulatory network inference at the genome level that incorporates prior knowledge is still to emerge.
Results: We present IntOMICS, an efficient integrative framework based on Bayesian networks. IntOMICS systematically analyses gene expression, DNA methylation, copy number variation and biological prior knowledge to infer regulatory networks. IntOMICS complements the missing biological prior knowledge by so-called empirical biological knowledge, estimated from the available experimental data. Regulatory networks derived from IntOMICS provide deeper insights into the complex flow of genetic information on top of the increasing accuracy trend compared to a published algorithm designed exclusively for gene expression data. The ability to capture relevant crosstalks between multi-omics modalities is verified using known associations in microsatellite stable/instable colon cancer samples. Additionally, IntOMICS performance is compared with two algorithms for multi-omics regulatory network inference that can also incorporate prior knowledge in the inference framework. IntOMICS is also applied to detect potential predictive biomarkers in microsatellite stable stage III colon cancer samples.
Conclusions: We provide IntOMICS, a framework for multi-omics data integration using a novel approach to biological knowledge discovery. IntOMICS is a powerful resource for exploratory systems biology and can provide valuable insights into the complex mechanisms of biological processes that have a vital role in personalised medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396869 | PMC |
http://dx.doi.org/10.1186/s12859-022-04891-9 | DOI Listing |
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Computer Science and Technology, Xidian University, Xi'an 710126, China.
Neuroblastoma is a common malignant tumor in childhood that seriously endangers the health and lives of children, making it essential to find effective prognostic markers to accurately predict their clinical outcomes. The development of high-throughput technology in the biomedical field has made it possible to obtain multi-omics data, whose integration can compensate for missing or unreliable information in a single data source. In this study, we integrated clinical data and two omics data, i.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with a poor prognosis. During the development of cancer cells, mitochondria influence various cell death patterns by regulating metabolic pathways such as oxidative phosphorylation. However, the relationship between mitochondrial function and cell death patterns in HCC remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy.
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!