Assessment of the spatiotemporal characteristics of vegetation water use efficiency in response to drought in Inner Mongolia, China.

Environ Sci Pollut Res Int

China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China.

Published: January 2023

Ecosystem water use efficiency (eWUE) can be used to obtain a better comprehension of the ecosystem water-carbon cycle. This study aimed to characterize the regional-scale responses and adaptations of different vegetation categories to drought changes and the spatiotemporal characteristics of WUE and associated drought factors for nine vegetation categories in Inner Mongolia, China, from 2000 to 2020. This study estimated drought, the association between drought and eWUE among varying vegetation categories, and the differences in eWUE between the drought stage and the post-drought stage by analyzing the spatiotemporal variations in eWUE of different vegetation categories based on MODIS ET (evapotranspiration), GPP (gross primary productivity), and temperature vegetation drought index data. The results illustrated the following: (1) the multi-year mean eWUE from 2000 to 2020 was 1.03 g·m·mm, with an overall significantly increasing trend of 0.008 g·m·mm and eWUE decreasing from northeast to southwest. (2) The rank of vegetation types in Inner Mongolia according to multi-year mean eWUE was evergreen coniferous forest > savanna > evergreen broadleaf forest > forested grassland > farmland > deciduous broadleaf forest > mixed forest > closed scrub > grassland. All vegetation categories illustrated an increasing trend in eWUE over time. (3) eWUE was inversely associated with drought in the drought stage and a clear effect of drought legacy was identified in which harsh drought impacted the eWUE of the ecosystem, whereas eWUE was positively associated with drought. (4) The eWUE values of ecosystems increased significantly after drought, indicating that ecosystems that are adapted to drought show high capacity to recovery from drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-22622-8DOI Listing

Publication Analysis

Top Keywords

vegetation categories
20
drought
15
inner mongolia
12
ewue
12
associated drought
12
spatiotemporal characteristics
8
vegetation
8
water efficiency
8
mongolia china
8
2000 2020
8

Similar Publications

The interplay of biotic and abiotic factors driving Ixodes ricinus abundance trends are not fully understood. Machine learning (ML) approaches are being increasingly used to explore this and predict future abundance patterns of this species, however, the studies focusing on this to date have had limitations (including short study duration, limited sample size, narrow geographical range and use of a single ML model). This study was undertaken to address these limitations by applying 11 predictive ML models (across three data clustering techniques) to a large I.

View Article and Find Full Text PDF

Assessing riparian functioning condition for improved ecosystem services: A case study of the Back Creek watershed (Virginia, USA).

J Environ Manage

January 2025

U.S. Environmental Protection Agency, Office of Research and Development, 960 College Station Rd., Athens, GA, 30605, USA. Electronic address:

Riparian functioning condition refers to a rating and description of the current ecological status of a reach of a riparian ecosystem in consideration of its potential hydrology, vegetation, and geomorphology. Reach rating options are Proper Functioning Condition (PFC), Functional-At-Risk (FAR), Non-Functional, and apparent or monitored trends. We assessed the functioning condition of flowing riverbank areas of Back Creek located in Virginia (USA) following a PFC protocol developed by the U.

View Article and Find Full Text PDF

Understanding rangeland desertification through pastoralist perspectives using a grounded theory approach.

Sci Rep

January 2025

Researcher of Rural Development and Social Issues in the Field of Natural Resources and Agriculture, Gorgan, Iran.

Rangeland desertification risk has significantly increased due to the fragility of these ecosystems and the severity of degradation caused by climate instability and human activities over the last decade. This research focuses on identifying indicators of rangeland desertification risk using a qualitative grounded theory approach based on the perspectives of pastoralists in Kolijah and Qolaq-Borte, Golestan Province, Iran. The study population comprised regional pastoralists, with 15 experts selected through snowball sampling.

View Article and Find Full Text PDF

Context: Historical land use is thought to have influenced plant community diversity, composition and function through the local persistence of taxa that reflect ecological conditions of the past.

Objectives: We tested for the effects of historical land use on contemporary plant species richness, composition, and ecological preferences in the grassland vegetation of Central Europe.

Methods: We analyzed 6975 vegetation plots sampled between 1946 and 2021 in dry, mesic, and wet grasslands in the borderland between Austria, the Czech Republic, and Slovakia.

View Article and Find Full Text PDF

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!