Ionic liquids (ILs) have emerged as suitable options for gas storage applications over the past decade. Consequently, accurate prediction of gas solubility in ILs is crucial for their application in the industry. In this study, four intelligent techniques including Extreme Learning Machine (ELM), Deep Belief Network (DBN), Multivariate Adaptive Regression Splines (MARS), and Boosting-Support Vector Regression (Boost-SVR) have been proposed to estimate the solubility of some gaseous hydrocarbons in ILs based on two distinct methods. In the first method, the thermodynamic properties of hydrocarbons and ILs were used as input parameters, while in the second method, the chemical structure of ILs and hydrocarbons along with temperature and pressure were used. The results show that in the first method, the DBN model with root mean square error (RMSE) and coefficient of determination (R) values of 0.0054 and 0.9961, respectively, and in the second method, the DBN model with RMSE and R values of 0.0065 and 0.9943, respectively, have the most accurate predictions. To evaluate the performance of intelligent models, the obtained results were compared with previous studies and equations of the state including Peng-Robinson (PR), Soave-Redlich-Kwong (SRK), Redlich-Kwong (RK), and Zudkevitch-Joffe (ZJ). Findings show that intelligent models have high accuracy compared to equations of state. Finally, the investigation of the effect of different factors such as alkyl chain length, type of anion and cation, pressure, temperature, and type of hydrocarbon on the solubility of gaseous hydrocarbons in ILs shows that pressure and temperature have a direct and inverse effect on increasing the solubility of gaseous hydrocarbons in ILs, respectively. Also, the evaluation of the effect of hydrocarbon type shows that increasing the molecular weight of hydrocarbons increases the solubility of gaseous hydrocarbons in ILs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395420PMC
http://dx.doi.org/10.1038/s41598-022-17983-6DOI Listing

Publication Analysis

Top Keywords

solubility gaseous
20
gaseous hydrocarbons
20
hydrocarbons ils
20
equations state
12
hydrocarbons
8
ionic liquids
8
ils
8
second method
8
method dbn
8
dbn model
8

Similar Publications

Zeolite Encapsulation to Enhance Interfacial Gas Availability for Photocatalytic Hydrogen Peroxide Production.

Angew Chem Int Ed Engl

December 2024

Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Zhongshan Road 457., 116023, Dalian, CHINA.

The photocatalytic oxidation of water with gaseous oxygen is environmentally benign for the synthesis of hydrogen peroxide (H2O2), but it is currently constrained by the inadequate supply of gaseous oxygen at the catalyst surface in a solid-liquid-gas triple-phase reaction system. Herein, we address this challenge by employing the zeolite encapsulated catalysts that efficiently enrich gaseous oxygen and accelerate the H2O2 synthesis in in aqueous conditions. We focus on the classical titania photocatalyst, encapsulating it within siliceous MFI zeolite crystals.

View Article and Find Full Text PDF

Effect of Short-Term High-CO Treatments on the Quality of Highbush and Rabbiteye Blueberries During Cold Storage.

Plants (Basel)

December 2024

Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040 Madrid, Spain.

The global demand for blueberries has increased due to their health benefits, but postharvest losses, particularly firmness loss and decay, present significant challenges. This study evaluated the effects of high CO concentrations (15% and 20%) applied for 3 d at 1.0 °C on highbush (cv.

View Article and Find Full Text PDF

In-situ generation and stabilization of gas bubbles for multiphase catalysis.

J Colloid Interface Sci

December 2024

Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, SA 5095, Australia. Electronic address:

Introducing stable gas bubbles in liquid is important for the industrial synthesis of chemicals and intermediates via multiphase reactions because of limited solubility of gaseous reactants such as H and O. Herein, a bubble-stabilized system is constructed via in-situ nucleation of bubbles at the surfaces of various polymer nanofibers that circumvents the repulsive interactions between gas-liquid interfaces and nanofibers. During bubble growth processes, nanofibers are self-assembled and interwoven to build spatial nanofiber network surrounding bubbles, firmly trapping bubbles in the liquid phase.

View Article and Find Full Text PDF

Pharmaceutical biowastes, rich in organic matter and high in moisture, are typical light industry byproducts with waste and renewable attributes. Thermochemical and biochemical conversion technologies transform these residues into value-added bioproducts, including biofuels, biofertilizers, and bio-carbon materials. Hydrothermal pretreatment effectively removes toxic substances and enhances feedstock for these processes.

View Article and Find Full Text PDF

Visible Light Triggerable CO Releasing Micelles.

J Am Chem Soc

December 2024

Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States.

Carbon monoxide (CO), along with nitric oxide and hydrogen sulfide, is one of a trinity of known gasotransmitters, or endogenously produced gaseous molecules that signal and regulate a panoply of physiological functions. CO releasing molecules (CORMs) are chemical tools that enable the study and application of this ephemeral gas, that, ideally, release CO on-demand when externally stimulated. Surveying the available triggers, photolysis is potentially advantageous: It is contactless and grants practitioners unparalleled spatial and temporal control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!