Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transforming growth factor β (TGF-β) is a well-known key mediator for the progression and metastasis of lung carcinoma. However, cost-effective anti-TGF-β therapeutics for lung cancer remain to be explored. Specifically, the low efficacy in drug delivery greatly limits the clinical application of small molecular inhibitors of TGF-β. In the present study, specific inhibitor of Smad3 (SIS3) is developed into a self-carried nanodrug (SCND-SIS3) using the reprecipitation method, which largely improves its solubility and bioavailability while reduces its nephrotoxicity. Compared to unmodified-SIS3, SCND-SIS3 demonstrates better anti-cancer effects through inducing tumor cell apoptosis, inhibiting angiogenesis, and boosting NK cell-mediated immune responses in syngeneic Lewis Lung Cancer (LLC) mouse model. Better still, it could achieve comparable anti-cancer effect with just one-fifth the dose of unmodified-SIS3. Mechanistically, RNA-sequencing analysis and cytokine array results unveil a TGF-β/Smad3-dependent immunoregulatory landscape in NK cells. In particular, SCND-SIS3 promotes NK cell cytotoxicity by ameliorating Smad3-mediated transcriptional inhibition of Ndrg1. Furthermore, improved NK cell cytotoxicity by SCND-SIS3 is associated with higher expression of activation receptor Nkp46, and suppressed levels of Trib3 and TSP1 as compared with unmodified-SIS3. Taken together, SCND-SIS3 possesses superior anti-cancer effects with enhanced bioavailability and biocompatibility, therefore representing as a novel therapeutic strategy for lung carcinoma with promising clinical potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2022.121730 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!