Omentum-on-a-chip: A multicellular, vascularized microfluidic model of the human peritoneum for the study of ovarian cancer metastases.

Biomaterials

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. Electronic address:

Published: September 2022

Epithelial ovarian cancer has the highest mortality rate of any gynecologic malignancy and most frequently metastasizes to the peritoneal cavity. Intraperitoneal metastases are highly associated with ascites, the pathologic accumulation of peritoneal fluid due to impaired drainage, increased peritoneal permeability, and tumor and stromal cytokine secretion. However, the relationship between ascites, vascular and mesothelial permeability, and ovarian cancer intraperitoneal metastases remains poorly understood. In this study, a vascularized in vitro model of the human peritoneal omentum and ovarian tumor microenvironment (TME) was employed to study stromal cell effects on tumor cell (TC) attachment and growth, as well as TC effects on vascular and mesothelial permeability in models of both early- and late-stage metastases. Control over the number of TCs seeded in the vascularized peritoneum revealed a critical cell density requirement for tumor growth, which was further enhanced by stromal adipocytes and endothelial cells found in the peritoneal omentum. This tumor growth resulted in both a physically-mediated decrease and cytokine-mediated increase in microvascular permeability, emphasizing the important and potentially opposing roles of tumor cells in ascites formation. This system provides a robust platform to elucidate TC-stromal cell interactions during intraperitoneal metastasis of ovarian cancer and presents the first in vitro vascularized model of the human peritoneum and ovarian cancer TME.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121728DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
model human
12
human peritoneum
8
intraperitoneal metastases
8
vascular mesothelial
8
mesothelial permeability
8
peritoneal omentum
8
tumor growth
8
ovarian
6
tumor
6

Similar Publications

Targeting on the PI3K/mTOR: a potential treatment strategy for clear cell ovarian carcinoma.

Cancer Chemother Pharmacol

January 2025

Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.

Purpose: Ovarian clear cell carcinoma is a highly malignant gynecological tumor characterized by a high rate of chemotherapy resistance and poor prognosis. The PI3K/AKT/mTOR pathway is well-known to be closely related to the progression of various malignancies, and recent studies have indicated that this pathway may play a critical role in the progression and worsening of OCCC.

Methods: In this study, we investigated the combined effects of WX390, a dual inhibitor of PI3K/mTOR, and cisplatin on OCCC through both in vitro and in vivo experiments to further elucidate their therapeutic effects.

View Article and Find Full Text PDF

Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review.

Cells

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways.

View Article and Find Full Text PDF

Ovarian squamous cell carcinoma: clinicopathological features, prognosis and immunotherapy outcomes.

J Gynecol Oncol

December 2025

Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.

Objective: To explore the characteristics and survival outcomes of ovarian squamous cell carcinoma (SCC) and the treatment effectiveness of immune checkpoint inhibitors (ICIs).

Methods: Patients diagnosed with ovarian SCC at Peking Union Medical College Hospital between January 2000 and September 2023 were included. Overall survival (OS) and progression-free survival (PFS) were analyzed using the Kaplan-Meier method.

View Article and Find Full Text PDF

Early prediction and risk stratification of ovarian cancer based on clinical data using machine learning approaches.

J Gynecol Oncol

December 2024

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.

Objective: Our study was aimed to construct a predictive model to advance ovarian cancer diagnosis by machine learning.

Methods: A retrospective analysis of patients with pelvic/adnexal/ovarian mass was performed. Potential features related to ovarian cancer were obtained as many as possible.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!