Key factors in the adsorption of natural organic matter to metal (hydr)oxides: Fractionation and conformational change.

Chemosphere

Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands; Agro-Environmental Protection Institute, Ministry of Agriculture, 300191, Tianjin, PR China. Electronic address:

Published: December 2022

Adsorption of natural organic matter (NOM) to mineral surfaces is an important process determining the environmental fate and biogeochemical cycling of many elements. Natural organic matter consists of a heterogeneous mixture of soft and flexible organic molecules. Upon adsorption, size fractionation may occur, as well as changes in molecular conformation. Although very important, these phenomena have been omitted in existing adsorption models. Filling this gap, a novel framework for NOM adsorption to metal (hydr)oxides is presented. Humic acid (HA) was used as an analog for studying experimentally the NOM adsorption to goethite and its size fractionation as a function of pH, ionic strength, and surface loading. Size fractionation was evaluated for adsorption isotherms collected at pH 4 and 6, showing HA molecules of low molar mass were preferentially adsorbed. This phenomenon was incorporated into the new model. Consistent description of the HA adsorption data over the entire range of pH (3-11), ionic strength (2-100 mM), and surface loading (0.1-3 mg m) indicated that the spatial distribution of HA molecules adsorbed in the interface is a trade-off between maximizing the interaction of the HA ligands with the oxide surface and minimizing the electrostatic repulsion between HA particles as a result of interfacial crowding. Our advanced consistent framework is able to quantify changes in molar mass and molecular conformation, thereby significantly contributing to an improved understanding of the competitive power of HA for interacting on oxides with other adsorbed small organic acids as well as environmentally important oxyanions, such as phosphate, arsenate, and others.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136129DOI Listing

Publication Analysis

Top Keywords

natural organic
12
organic matter
12
size fractionation
12
adsorption
8
adsorption natural
8
metal hydroxides
8
molecular conformation
8
nom adsorption
8
ionic strength
8
surface loading
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity.

View Article and Find Full Text PDF

3D printing of biological tooth with multiple ordered hierarchical structures.

Mater Today Bio

February 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.

Natural teeth fulfill functional demands by their heterogeneity. The composition and hydroxyapatite (HAp) nanostructured orientation of enamel differ from those of dentin. However, mimicking analogous materials still exhibit a significant challenge.

View Article and Find Full Text PDF

Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.

ACS Cent Sci

January 2025

Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

The objective of the study was to synthesize tetrazole molecules featuring nitro groups positioned at the para and meta locations. We aimed to assess their effectiveness in inhibiting corrosion of mild steel in a 1 M HCl solution at 298 K. Tetrazoles with 2,5-disubstitution were created using [3 + 2] cycloaddition and N-alkylation techniques, with a particular emphasis on synthesizing molecules that contain nitro groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!