Integrated electro-coagulation and gravity driven ceramic membrane bioreactor for roofing rainwater purification: Flux improvement and extreme operating case.

Sci Total Environ

Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. Electronic address:

Published: December 2022

The collected roofing rainwater with high water quality and large water volume, can alleviate the crisis of water resources and fit the Low-Impact Development (LID) concept. In this work, a novel water purification technology, Electro-Coagulation coupled with Gravity-Driven Ceramic Membrane Bio-Reactor (EC-GDCMBR) was developed for the roofing rainwater purification under long-term operation (136 days). EC-GDCMBR system not only exhibited the better effluent quality, but also obtained the greater flux (~32 LMH). The reason contributed to the high permeability of ceramic membrane and large porosity of biofilm formed by floc growth (~36 μm) during the EC process, which was also proved by SEM image. The coagulation, adsorption, biodegradation, and coprecipitation of EC-GDCMBR was able to synergistically remove the particulate matter, ammonia nitrogen (NH-N), Total Phosphorus (TP), organic substances, and heavy metal (i.e., Cr, Zn, and Cu). In particular, via the analysis of bacterial abundance, Extracellular Polymeric Substances (EPS), Assimilable Organic Carbon (AOC), Adenosine Tri-Phosphate (ATP) and Confocal Laser Scanning Microscopy (CLSM), EC could sweep most free bacteria on the ceramic membrane surface, enhancing the biological purification efficiency. Furthermore, a large amount of Pseudomonas (12.4 %-66.7 %) and Nitrospira (1.46 %-3.16 %) in the aggregates formed the biofilms, improved the NH-N removal. During the long-term operation, there are some unavoidable problems, such as the thick and ripened biofilm of EC-GDCMBR would crack and fall off. Based on this, the current work also studied the reliability of GDCMBR under "extreme operating case", and the results showed that neither the biofilm detachment nor the biofilm breakup had a significant impact on the effluent quality. Overall, the findings of this study suggest the reliability of EC-GDCMBR for the sustainable operation of roofing rainwater purification and improve the application value of decentralized rainwater harvest device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158197DOI Listing

Publication Analysis

Top Keywords

ceramic membrane
16
roofing rainwater
16
rainwater purification
12
long-term operation
8
effluent quality
8
rainwater
5
purification
5
ec-gdcmbr
5
integrated electro-coagulation
4
electro-coagulation gravity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!