Persistence in a tropical transition zone? Sargassum forests alternate seasonal growth forms to maintain productivity in warming waters at the expense of annual biomass production.

Sci Total Environ

Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China; The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK. Electronic address:

Published: December 2022

Macroalgal forests provide productivity and biomass that underpins the function of many coastal ecosystems globally. The phenology of forests is seasonally driven by environmental conditions, with the environment-productivity relationship understood for most coastlines of the world. Climatic transition zones, however, have characteristics of temperate and tropical regions, creating large fluctuations in environmental conditions, and potentially limiting productivity and the persistence of macroalgal forests. The response of a forest-forming, dimorphic seaweed (Sargassum hemiphyllum) to seasonal temperature and light conditions in a rapidly warming tropical-temperate transitional zone (Hong Kong) was quantified by measuring in situ growth, net primary productivity (NPP), respiration, and photosynthetic potential. These physiological responses of S. hemiphyllum were then experimentally tested in response to changing temperatures (16.5-27 °C) and irradiances (20, 110, and 300 μmol m s) in laboratory mesocosms. In contrast to predictions, S. hemiphyllum demonstrated asynchronous NPP and growth patterns, with growth maximized in cooler conditions but, counter-intuitively, highest photosynthetic rates in summer after annual senescence and dormancy were established. This discrepancy between peak photosynthetic rates and growth may provide regional populations of S. hemiphyllum the ability to survive higher temperatures in the near future, resisting the predicted range shifts under ocean warming. In contrast, warming is likely to drive a shorter growth season, longer dormancy, and reduced annual biomass production in bi-phasic seaweeds inhabiting climatic transition zones, potentially reducing system-wide productivity of these algal forests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158154DOI Listing

Publication Analysis

Top Keywords

annual biomass
8
biomass production
8
macroalgal forests
8
environmental conditions
8
climatic transition
8
transition zones
8
photosynthetic rates
8
growth
6
forests
5
productivity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!