A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical stimulation of a bioactive, functionalized PVDF-TrFE scaffold provides electrical signaling for nerve repair applications. | LitMetric

Mechanical stimulation of a bioactive, functionalized PVDF-TrFE scaffold provides electrical signaling for nerve repair applications.

Biomater Adv

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States of America; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States of America; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America. Electronic address:

Published: September 2022

Traumatic nerve injuries have limited success in achieving full functional recovery, with current clinical solutions often including implementation of nerve grafts or the use of nerve conduits to guide damaged axons across injury gaps. In search of alternative, and complimentary solutions, piezoelectric biomaterials demonstrate immense potential for tissue engineering applications. Piezoelectric poly(vinylidene fluoride-triflouroethylene) (PVFD-TrFE) scaffolds can be harnessed to non-invasively stimulate and direct function of key peripheral nervous system (PNS) cells in regeneration strategies. In this study, electrospun PVDF-TrFE was characterized, fabricated into a 3D scaffold, and finally rendered bioactive with the incorporation of a cell-secreted, decellularized extracellular matrix (dECM). PVDF-TrFE scaffolds were characterized extensively for piezoelectric capacity, mechanical properties, and cell-material interactions with fibroblasts and Schwann cells. Through functionalization of PVDF-TrFE scaffolds with a native, cell-assembled dECM, the ability to promote cell adhesion and enhanced viability was also demonstrated. Additionally, incorporation of bioactive functionalization improved the assembly of key regenerative ECM proteins and regenerative growth factors. PVDF-TrFE scaffolds were then fabricated into a conduit design that retained key physical, chemical, and piezoelectric properties necessary for PNS repair. This work shows great promise for multi-cue, electrospun biomaterials for regeneration of the PNS in traumatic injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213081DOI Listing

Publication Analysis

Top Keywords

pvdf-trfe scaffolds
12
pvdf-trfe
5
mechanical stimulation
4
stimulation bioactive
4
bioactive functionalized
4
functionalized pvdf-trfe
4
pvdf-trfe scaffold
4
scaffold electrical
4
electrical signaling
4
nerve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!