Effects of 3-methyladenine, an autophagy inhibitor, on the elevated blood pressure and arterial dysfunction of angiotensin II-induced hypertensive mice.

Biomed Pharmacother

Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea. Electronic address:

Published: October 2022

Autophagy is an intracellular degradation system that disassembles cytoplasmic components through autophagosomes fused with lysosomes. Recently, it has been reported that autophagy is associated with cardiovascular diseases, including pulmonary hypertension, atherosclerosis, and myocardial ischemia. However, the involvement of autophagy in hypertension is not well understood. In the present study, we hypothesized that excessive autophagy contributes to the dysfunction of mesenteric arteries in angiotensin II (Ang II)-induced hypertensive mice. Treatment of an autophagy inhibitor, 3-methyladenine (3-MA), reduced the elevated blood pressure and wall thickness, and improved endothelium-dependent relaxation in mesenteric arteries of Ang II-treated mice. The expression levels of autophagy markers, beclin1 and LC3 II, were significantly increased by Ang II infusion, which was reduced by treatment of 3-MA. Furthermore, treatment of 3-MA induced vasodilation in the mesenteric resistance arteries pre-contracted with U46619 or phenylephrine, which was dependent on endothelium. Interestingly, nitric oxide production and phosphorylated endothelial nitric oxide synthase (p-eNOS) at S1177 in the mesenteric arteries of Ang II-treated mice were increased by treatment with 3-MA. In HUVECs, p-eNOS was reduced by Ang II, which was increased by treatment of 3-MA. 3-MA had direct vasodilatory effect on the pre-contracted mesenteric arteries. In cultured vascular smooth muscle cells (VSMCs), Ang II induced increase in beclin1 and LC3 II and decrease in p62, which was reversed by treatment of 3-MA. These results suggest that autophagy inhibition exerts beneficial effects on the dysfunction of mesenteric arteries in hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113588DOI Listing

Publication Analysis

Top Keywords

mesenteric arteries
20
treatment 3-ma
20
autophagy
8
autophagy inhibitor
8
elevated blood
8
blood pressure
8
ii-induced hypertensive
8
hypertensive mice
8
dysfunction mesenteric
8
arteries ang
8

Similar Publications

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Background: Level of lymph nodes dissection (LND) and inferior mesenteric artery (IMA) ligation is still matter of debate of radical resection of colorectal cancer. This study aims to compare the short-term outcome of three different surgical techniques to treat sigmoid cancer: low ligation (LL) of the IMA with D3-LND, low IMA ligation with D2-LND, and high ligation (HL) of the IMA with D3-LND.

Methods: Patients affected by sigmoid colon cancer, who underwent radical resection with three different techniques (LL and D3-LND Group A, HL and D3-LND Group B, and LL with D2 LND- Group C), were included.

View Article and Find Full Text PDF

Age-dependent changes in diameters of abdominal visceral arteries in children.

Jpn J Radiol

December 2024

Faculty of Medicine, Department of Pediatric Surgery, Van Yüzüncü Yil University, Van, Turkey.

Purpose: The diameters of the abdominal aorta and its branches are affected by demographic properties of patients like age, sex or body mass index. Some researchers use the body of the first lumbar vertebra (L1) as an anatomical indicator to create an exact standard for diagnosing arterial aneurysms or stenoses. In this regard, this work designed to uncover relations of abdominal visceral arteries with L1 in normal children using their abdominopelvic computed tomography images.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Vasorelaxant effect of fennel seeds (Foeniculum vulgare Mill) extracts on rat mesenteric arteries: Assessment of phytochemical profiling and antioxidant potential.

Fitoterapia

December 2024

Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco. Electronic address:

Ethnopharmacological Relevance: Hypertension is a serious health problems and a leading cause of adult mortality worldwide. Foeniculum. vulgare Mill, a plant traditionally used for various ailments, including cardiovascular disorders such as hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!