Many proteins secreted from plant cells into the surrounding extracellular space help maintain cell structure and regulate stress responses in the external environment. In this study, under Pi-replete and depleted conditions, 652 high-confidence secreted proteins were quantified from wild-type (WT) and PHOSPHATE RESPONSE 2 (OsPHR2)-overexpressing suspension-cultured cells (SCCs). These proteins were functionally grouped as phosphatases, signal transduction proteins, pathogen-related (PR) proteins, cell wall-remodeling proteins, and reactive oxygen species (ROS) metabolism proteins. Although PHOSPHATE RESPONSE (PHR) transcription factors regulate two-thirds of Pi-responsive genes at the transcriptional level, only 30.6% of the Pi-starvation-regulated secreted proteins showed significant changes in OsPHR2-overexpressing SCCs. The OsPHR2-dependent systemic Pi signaling pathway mainly regulates phosphatases and PR proteins, which are involved in the utilization of organophosphate, pathogen resistance, and colonization by rhizosphere microorganisms. The OsPHR2-independent local Pi signaling pathway, on the other hand, largely regulated ROS metabolism proteins, cell wall-remodeling proteins, and signal transduction proteins, which are involved in modifying cell wall structure and root architecture. The functions of differentially expressed secreted proteins between WT and OsPHR2-overexpressing plants under Pi-sufficient and Pi-deficient conditions were further confirmed by analysis of the acid phosphatase activity, ROS content, and cell wall composition.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erac342DOI Listing

Publication Analysis

Top Keywords

proteins
13
phosphate response
12
secreted proteins
12
signal transduction
8
transduction proteins
8
proteins cell
8
cell wall-remodeling
8
wall-remodeling proteins
8
ros metabolism
8
metabolism proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!