SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2.

PLoS Comput Biol

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.

Published: August 2022

AI Article Synopsis

  • DeepMind's AlphaFold2 has revolutionized structural biology by accurately predicting protein structures and creating a comprehensive database, but it typically provides only a single conformation, raising concerns about its ability to represent protein flexibility.
  • Researchers propose a new method to coax AlphaFold2 into modeling alternative protein shapes by manipulating multiple sequence alignments, suggesting that these alignments can reflect protein diversity.
  • This innovative approach enhances AlphaFold2's utility by enabling the exploration of multiple protein conformations, which can be essential for various applications, including drug design and studying membrane proteins.

Article Abstract

The unprecedented performance of Deepmind's Alphafold2 in predicting protein structure in CASP XIV and the creation of a database of structures for multiple proteomes and protein sequence repositories is reshaping structural biology. However, because this database returns a single structure, it brought into question Alphafold's ability to capture the intrinsic conformational flexibility of proteins. Here we present a general approach to drive Alphafold2 to model alternate protein conformations through simple manipulation of the multiple sequence alignment via in silico mutagenesis. The approach is grounded in the hypothesis that the multiple sequence alignment must also encode for protein structural heterogeneity, thus its rational manipulation will enable Alphafold2 to sample alternate conformations. A systematic modeling pipeline is benchmarked against canonical examples of protein conformational flexibility and applied to interrogate the conformational landscape of membrane proteins. This work broadens the applicability of Alphafold2 by generating multiple protein conformations to be tested biologically, biochemically, biophysically, and for use in structure-based drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436118PMC
http://dx.doi.org/10.1371/journal.pcbi.1010483DOI Listing

Publication Analysis

Top Keywords

conformational flexibility
8
protein conformations
8
multiple sequence
8
sequence alignment
8
protein
7
alphafold2
5
speach_af sampling
4
sampling protein
4
protein ensembles
4
conformational
4

Similar Publications

Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner.

View Article and Find Full Text PDF

We introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.

View Article and Find Full Text PDF

Unlabelled: Atomic coordinate models are important in the interpretation of 3D maps produced with cryoEM and sub-tomogram averaging in cryoET, or more generically, 3D electron microscopy (3DEM). In addition to visual inspection of such maps and models, quantitative metrics convey the reliability of the atomic coordinates, in particular how well the model is supported by the experimentally determined 3DEM map. A recently introduced metric, Q-score, was shown to correlate well with the reported resolution of the map for well-fitted models.

View Article and Find Full Text PDF

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!