[Microplastic and dermatological care].

Dermatologie (Heidelb)

Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Deutschland.

Published: January 2023

Background: Synthetic polymers (plastics) from fossil resources are produced in large quantities and reach the environment as microplastics due to improper disposal and via various entry routes. This may lead to implications on flora, fauna, and humans.

Objectives: This article aims to provide a concise overview for dermatologists about this complex topic and how it relates to daily medical practice.

Materials And Methods: We performed a selective literature review regarding microplastics and sustainability in dermatology in liaison with the collaborative research center on microplastics at the University of Bayreuth.

Results: Primary and secondary microplastics are released into the environment on a large scale and accumulate in aquatic and terrestrial ecosystems. This may lead to their disruption and bears potential to create ecological niches for human pathogenic species. Humans and animals inhale and ingest microplastics, and the health consequences have not been sufficiently investigated. This is mainly because microplastics are not a homogenous group of substances, and potential effects depend on various properties (e.g., type of polymer, size, shape, additivation, surface charge). Dermatological care is resource intensive and contributes in various ways to this matter.

Conclusion: Plastics are currently indispensable in many fields. Nevertheless, physicians have the responsibility to prevent negative consequences for the health of society (precautionary principle). Extensive efforts are thus necessary for better sustainability; this includes medical care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395856PMC
http://dx.doi.org/10.1007/s00105-022-05035-zDOI Listing

Publication Analysis

Top Keywords

microplastics
6
[microplastic dermatological
4
dermatological care]
4
care] background
4
background synthetic
4
synthetic polymers
4
polymers plastics
4
plastics fossil
4
fossil resources
4
resources produced
4

Similar Publications

Bacterial denitrification is a main pathway for soil NO sinks, which is crucial for assessing and controlling NO emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial NO sink capacity before degradation remain poorly understood.

View Article and Find Full Text PDF

Influence of selected dosages of plastic microparticles on the porcine fecal microbiome.

Sci Rep

January 2025

Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.

Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes.

View Article and Find Full Text PDF

Microplastics (MPs) are fragments with a diameter of less than 5 mm that have been directly manufactured or formed by the degradation of plastic waste. MPs are not only prone to bioaccumulation in the environment, but they also lead to the spread of micropollutants in the environment, thereby threatening human health ecological environment. The useful detection method of MPs and understanding their abundance, characteristics and toxicity are great essential for MPs removal and control.

View Article and Find Full Text PDF

Soil aggregation alterations under soil microplastic and biochar addition and aging process.

Environ Pollut

January 2025

School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.

Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation.

View Article and Find Full Text PDF

Response of wastewater treatment performance and bacterial community to original and aged polyvinyl chloride microplastics in sequencing batch reactors.

Bioresour Technol

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China. Electronic address:

Microplastics (MPs) are prevalent in wastewater treatment systems, and their behavior is further complicated after undergoing aging processes. This study explored the impact of original and aged polyvinyl chloride (PVC) MPs on wastewater treatment performance and bacterial communities. Results revealed that Fenton-aging treatment induced surface roughening of the MPs and altered their chemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!