Prussian blue analogues (PBAs) as a class of metal-organic frameworks demonstrate a promising platform to develop cost-effective high-performance electrocatalysts. However, the construction of delicate micro/nanostructures and controllable doping are still a challenging task for the fabrication of highly efficient copper-based electrocatalysts. Herein, we report a facile synthesis of copper foam supported CuP@Co-CuP (CH@PBA-P/CF) sub-microwire arrays as an active electrocatalyst for alkaline water splitting. The Co-CuP shell derived from the Cu[Co(CN)] PBA serves as the source of active sites. Co doping and construction of core-shell structures endow the CH@PBA-P/CF electrocatalyst with abundant catalytic sites, enhanced intrinsic activity, and low charge transport resistance. The catalytic electrode integrated with 3D copper foam and 1D sub-microwire arrays is highly conductive and stable, which promotes the charge transport and improves the structural stability. As a consequence, CH@PBA-P/CF shows impressive catalytic performances toward the HER and OER in terms of low overpotentials of 231 and 312 mV at a current density of 50 mA cm in 1 M KOH, respectively. Notably, the water electrolyzer using the CH@PBA-P/CF electrode exhibits better water splitting performance than the one using noble metal-based couples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02013kDOI Listing

Publication Analysis

Top Keywords

water splitting
12
prussian blue
8
copper foam
8
sub-microwire arrays
8
charge transport
8
processable prussian
4
blue analogue-mediated
4
analogue-mediated route
4
route promote
4
promote alkaline
4

Similar Publications

Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.

ACS Cent Sci

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.

View Article and Find Full Text PDF

Deep water vetulicolians from the lower Cambrian of China.

PeerJ

January 2025

Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.

Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.

View Article and Find Full Text PDF

Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.

View Article and Find Full Text PDF

Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.

View Article and Find Full Text PDF

Cation-Vacancy Engineering in Cobalt Selenide Boosts Electrocatalytic Upcycling of Polyester Thermoplastics at Industrial-Level Current Density.

Adv Mater

January 2025

State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

The past decades have witnessed the increasing accumulation of plastics, posing a daunting environmental crisis. Among various solutions, converting plastics into value-added products presents a significant endeavor. Here, an electrocatalytic upcycling route that efficiently converts waste poly(butylene terephthalate) plastics into high-value succinic acid with high Faradaic efficiency of 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!